Transient Sensorineural Hearing Loss after Overuse of Portable Headphone Cassette Radios

1985 ◽  
Vol 93 (5) ◽  
pp. 622-625 ◽  
Author(s):  
Phillip C. Lee ◽  
Craig W. Senders ◽  
Bruce J. Gantz ◽  
Steven R. Otto

Noise-induced sensorineural hearing loss has been associated with Industry for many years. One conservative estimate suggests that 10 million Americans may have industry-related, noise-induced hearing loss. Acoustic trauma from any source, whether associated with work or recreations, is detrimental to hearing. The Occupational Safety and Health Administration has set industrial standards for noise levels, with current standards limiting noise exposure to 95 dBA for 2 hours daily. To date, however, there are no recreational standards. Many portable headphone cassette radios produce peak outputs of more than 100 dBA. Temporary threshold shifts could result from listening levels near the maximum output. Permanent sensorineural loss may result with repeated exposure. A pilot study was conducted in which 16 volunteers listened to headphone sets for 3 hours at their usual maximum level. Six volunteers showed transient shifts of 10 dB, and one volunteer showed a transient shift of approximately 30 dB. These shifts returned to normal within 24 hours. As expected, transient shifts frequently occur with recreational use. Therefore, recreational warnings and standards should be established.

2012 ◽  
Vol 3 (3) ◽  
pp. 127-132 ◽  
Author(s):  
Mustafa Paksoy ◽  
Arif Sanli ◽  
Umit Hardal ◽  
Sermin Kibar ◽  
Gokhan Altin ◽  
...  

ABSTRACT Objective In otology, a wide variety of devices are used that have significant noise output, both operated ear and the patient. We aimed to determine hearing damages due to drill-generated acoustic trauma in ear surgery. We want to find how degree drill-generated acoustic trauma is responsible from sensorineural hearing loss in ear surgery. Materials and methods We designed a retrospective study about 100 patients who underwent radical or modiphied radical mastoidectomy and tympanoplasty. The audiometric testing was done both pre and postoperatively to detect any significant hearing loss in the immediate postoperative period. The data were analyzed using the Wilcoxon sign and Mann-Whitney U tests. This study proposes that hearing loss is caused by drill noise conducted to the operated ear by vibrations of temporal bone. Results A sensorineural hearing loss soon after mastoid surgery is seen due to the noise generated by the drill. Mean pure-tone thresholds obtained was significantly more in mastoidectomy applied patients when compared to tympanoplasty . Mean bone conduction (BC) hearing levels impaired 6,6 dB in 1 kHz, 5.5 dB in 0.5 kHz, 5 dB in 4.kHz and 3.1 dB in 2 kHz in mastoidectomy groups but improved 5.5 dB in 0.5 kHz, 2.2 dB in 1 kHz, 2.7 dB in 2 kHz in tympanoplasty groups. Statistically significant differences were observed at the 0.5-1 and 4 kHz frequencies pre and postoperative in the hearing thresholds of BC changing in mastoidectomy group, however, the averages of ranks of all pre and postoperative measurement of hearing levels show differences between mastoidectomy and tympanoplasty groups was significant in statistically at independent groups (p < 0.05). Conclusion We conclude that drill-generated noise during mastoid surgery has been incriminated as a cause of sensorineural hearing loss. Drilling during mastoid surgery may result in temporary or permanent noise-induced hearing loss. Possible noise disturbance to the inner ear can only be avoided by minimizing the duration of harmful noise exposure and carefull using burr to near the cochlear structures. How to cite this article Paksoy M, Sanli A, Hardal U, Kibar S, Altin G, Erdogan BA, Bekmez ZE. How Drill-Generated Acoustic Trauma effects Hearing Functions in an Ear Surgery? Int J Head and Neck Surg 2012;3(3):127-132.


2008 ◽  
Vol 136 (5-6) ◽  
pp. 221-225
Author(s):  
Slobodan Spremo ◽  
Zdenko Stupar

INTRODUCTION Cochlear damage secondary to exposure to acoustic trauma is the consequence of the acoustic energy effects on the hearing cells in Korti's organ. OBJECTIVE The objective was to assess the correlation between the degree of sensorineural hearing loss and the type of audiogram registered in acoustic trauma exposed patients. METHOD We analyzed 262 audiograms of patients exposed to acoustic trauma in correlation to 146 audiograms of patients with cochlear damage and hearing loss not related to acoustic trauma. "A" group consisted of acoustic trauma cases, while "B" group incorporated cases with hearing loss secondary to cochlear ischaemia or degeneration. All audiograms were subdivided with regard to the mean hearing loss into three groups: mild (21-40 dB HL), moderate (41-60 dB HL) and severe (over 60 dB HL) hearing loss. Based on audiogram configuration five types of audiogram were defined: type 1 flat; type 2 hearing threshold slope at 2 kHz, type 3 hearing threshold slope at 4 kHz; type 4 hearing threshold notch at 2 kHz; type 5 notch at 4 kHz. RESULTS Mild hearing loss was recorded in 163 (62.2%) ears in the acoustic trauma group, while in 78 (29.8%) ears we established moderate hearing loss with the maximum threshold shift at frequencies ranging from 4 kHz to 8 kHz. The least frequent was profound hearing loss, obtained in 21 (8%) audiograms in the acoustic trauma group. Characteristic audiogram configurations in the acoustic trauma patient group were: type 1 (N=66; 25.2%), type 2 (N=71; 27.1%), and type 3 (N=68; 25.9%). Audiogram configurations were significanly different in the acoustic trauma group in comparison to the cochlear ischaemia group of patients (p=0.0005). CONCLUSION Cochlear damage concomitant to acoustic trauma could be assessed by the audiogram configuration. Preserved hearing acuity at low and mild frequency range indicates the limited damage to the hearing cells in Korti's organ in the apical cochlear turn.


2020 ◽  
Vol 5 (1) ◽  
pp. 58-61
Author(s):  
Vera B. Pankova ◽  
Irina N. Fedina ◽  
Pavel V. Serebpyakov ◽  
Leonid L. Volokhov ◽  
Natalya G. Bomshteyn

Objectives - to present a step-by-step algorithm for diagnosis, examination and assessment of professional suitability in noise-induced hearing loss. Material and methods. A group of experts analysed the evidence base, consisting of more than 200 cases of primary diagnosed occupational sensorineural hearing loss (OHL), registered by various institutes for occupational safety and health. Also, the methodological instructions on the main issues of occupational hearing loss examination were regarded. Results. The methodological and regulatory documents were developed and put in practice, allowing the hygienic and clinical specialists to follow the step-by-step diagnostic and examination algorithms for OHL. Conclusion. All specialists, involved in the diagnosis, in the expertise of the occupational impact, the assessment of professional suitability, the OHL prophylaxis, should use the unified step-by-step algorithms, presented in the regulatory and methodological documents of federal and professional significance.


2020 ◽  
Vol 12 (1) ◽  
pp. 59
Author(s):  
Diana Kusuma Wardhani ◽  
Jojok Mukono Mukono

Introduction: As one of the preferred modes of land transportation, the frequency of train services was very high. One of the negative impacts arising from train activity was noise. The high noise intensity of the train causes hearing loss. Method: This study aims to analyze the differences in the incidence of hearing loss in 2 groups of residents in Turirejo Lawang Malang. This research used the observational method and the data were analyzed descriptive qualitative. A total of 20 people were selected as respondents by purposive sampling. Noise intensity was measured by Sound Level Meter and audiometric measurements were examined at SIMA Malang Laboratory. Result and Discussion: The prevalence of sensorineural hearing loss was more common in residents whose homes at 3-7 m away from the railroad tracks. In addition, residents who lived at least 15 years at a distance of 3-7 m also experienced more hearing loss. One cause of hearing loss is due to exposure to high noise and for a long time and will damage the hair cells in the cochlea, causing hearing loss. If noise exposure continues and for a long period of time damage to hair cells will be permanent and cannot return to normal. Conclusion: There needs to be a policy from the government in determining the minimum limit of the distance of the house to the railroad tracks. In addition, it is necessary to install a barrier near people’s homes to reduce noise.


2020 ◽  
Author(s):  
Peter Pruitt ◽  
Thomas Osborne Stair

As the structure of the ear is made of little more than cartilage, a limited blood supply, and a thin layer of skin, trauma in this area can easily manifest from a variety of causes. Some common examples of trauma involve laceration, piercing (intentional or otherwise), infection causing chondritis, blunt trauma causing necrosis, rupture of the tympanic membrane, perforation of the ear drum, and acoustic trauma that may result in hearing disorders such as tinnitus and high-frequency hearing loss. Acute hearing loss shows in two forms: conductive hearing loss and sensorineural hearing loss, the latter of which is caused by damage to the anatomic or neurologic structures of the ear dedicated to hearing. Sensorineural hearing loss generally has a poor prognosis and mandates prompt referral to an otolaryngologist.  This review contains 4 figures, 13 tables, and 32 references. Keywords: Ear, auricular canal, trauma, otitis media, otitis externa, hearing loss, mastoiditis, cerumen, impaction


2015 ◽  
Vol 273 (5) ◽  
pp. 1099-1105 ◽  
Author(s):  
Lisa Aarhus ◽  
Kristian Tambs ◽  
Per Nafstad ◽  
Eskil Bjørgan ◽  
Bo Engdahl

2021 ◽  
Vol 15 ◽  
Author(s):  
Lingna Guo ◽  
Wei Cao ◽  
Yuguang Niu ◽  
Shuangba He ◽  
Renjie Chai ◽  
...  

Inner ear hair cells (HCs) and spiral ganglion neurons (SGNs) are the core components of the auditory system. However, they are vulnerable to genetic defects, noise exposure, ototoxic drugs and aging, and loss or damage of HCs and SGNs results in permanent hearing loss due to their limited capacity for spontaneous regeneration in mammals. Many efforts have been made to combat hearing loss including cochlear implants, HC regeneration, gene therapy, and antioxidant drugs. Here we review the role of autophagy in sensorineural hearing loss and the potential targets related to autophagy for the treatment of hearing loss.


CoDAS ◽  
2013 ◽  
Vol 25 (3) ◽  
pp. 224-228 ◽  
Author(s):  
Kelly Martins ◽  
Marília Fontenele ◽  
Silva Câmara ◽  
Edi Lúcia Sartorato

PURPOSE: This study aimed to correlate probable predisposing factors for sensorineural hearing loss in elderly by investigating the audiologic characteristics and frequency of mutations in genes considered responsible for non-syndromic hearing loss. METHODS: Sixty elderly patients were separated into two groups: the Case Group, composed of 30 individuals, 21 females and nine males, all 60 years old or older and presenting diagnoses of sensorineural hearing loss, and the Control Group, composed of 30 elderly individuals matched to the experimental group by age and gender, presenting normal hearing. The patients underwent anamnesis and pure tone audiometry in frequencies of 250, 500, 1000, 2000, 3000, 4000 and 6000 Hz. Blood samples were collected from each patient for analysis of mutations in nuclear and mitochondrial genes related to non-syndromic sensorineural hearing loss. RESULTS: It was observed a greater tendency to noise exposure and consumption of alcohol in the Case Group. The statistically significant symptoms between the groups were tinnitus and hearing difficulty in several situations as: silent environment, telephone, television, sound location and in church. All the individuals of Case Group presented sensorineural and bilateral hearing loss. The symmetry and progression of the hearing impairment were also statistically significant between the groups. No genetic mutations were identified. CONCLUSION: The most reported symptoms were communication difficulties and tinnitus. The predominant auditory characteristics included sensorineural, bilateral, progressive and symmetrical hearing loss. It was not evidenced a relationship between sensorineural hearing loss in elderly and genes considered responsible for non-syndromic hearing loss as no genetic mutation was found in this study.


Author(s):  
V. B. Pankova ◽  
M. F. Vilk ◽  
N. A. Daikhes

Modern, problematic issues of prevalence, structure and high rates of hearing loss from exposure to industrial noise in the form of clinical stages of chronic sensorineural hearing loss are reflected. The possibility of harmonization of the List of occupational diseases of the ICD 10th and 11th reviews in hearing impairment is discussed


1987 ◽  
Vol 30 (1) ◽  
pp. 37-43 ◽  
Author(s):  
David B. Hawkins ◽  
Robert A. Prosek ◽  
Brian E. Walden ◽  
Allen A. Montgomery

Binaural loudness summation was measured using three different paradigms with 10 normally hearing and 20 bilaterally symmetrical high-frequency sensorineural hearing loss subjects. An adaptive paradigm and a loudness matching procedure measured summation at the lower and upper level of comfortable loudness and the loudness discomfort level (LDL). Monaural and binaural LDLs also were obtained with a clinical procedure designed to select maximum output of hearing aids. Stimuli for all three tasks consisted of 500- and 4000-Hz pure tones and a speech spectrum noise. Binaural summation increased with presentation level using the loudness matching procedure, with values in the 6–10 dB range. Summation decreased with level using the adaptive paradigm, and no summation was present with the clinical LDL task. The hearing-impaired subjects demonstrated binaural summation that was not significantly different from the normally hearing subjects. The results suggest that a bilaterally symmetrical sensorineural hearing loss does not affect binaural loudness summation. The monaural and binaural dynamic range widths were similar, and the LDL results suggest that binaural loudness summation may not be an important factor in selecting maximum output of hearing aids.


Sign in / Sign up

Export Citation Format

Share Document