Three-Dimensional Computer Reconstruction of a Temporal Bone

1989 ◽  
Vol 101 (5) ◽  
pp. 522-526 ◽  
Author(s):  
Charles Lutz ◽  
Akira Takagi ◽  
Ivo P. Janecka ◽  
Isamu Sando

The complexities of the temporal bone and the critical inter-relationships among its key structures can be simplified with three-dimensional computer-assisted reconstruction. Knowledge of the topography of these structures and their mutual relationships in essential in any surgical approach to the temporal bone. Sixty sagittal histologic sections of a normal left temporal bone were examined. Each section, 30 μm in thickness, was optically enlarged. Segments representing the facial nerve, internal carotid artery, and inner ear structures from individual slides were traced and data were entered into a computer. A personal computer was used for data processing and analysis. Graphic software developed in our laboratory generated images with x-y-z coordinates that could be rotated In any plane. The high resolution of the computer graphics system, combined with the precision of histologic sections, permitted study of the critical three-dimensional anatomic relationships among essential intratemporal bone structures. The capability of reproducing individual and joint images of the intratemporal bone structures and viewing them from all surgical angles gives skull base and otologic surgeons Important topographic guidance. Accurate spatial measurements of temporal bone anatomy are now possible with the application of computer graphic technology.

1986 ◽  
Vol 27 (4) ◽  
pp. 389-394 ◽  
Author(s):  
H. Wilbrand ◽  
W. Rauschning

To increase our understanding of the complex topographic relations between temporal bone structures and to facilitate the interpretation of their radiographic images, two techniques were developed. 1) Plastic moulding of temporal bone specimens using polyester resin and silicone rubber substances providing detailed information and a three-dimensional survey of the structures. Carefully macerated temporal bone specimens are filled with plastic material under vacuum and the bone is then dissolved. The preparations, freed from irrelevant structures and embellished, allow metric evaluation of the different structures and their topographic relations. 2) Automatic serial cryomicrotomy of fresh, deep-frozen temporal bones, using a commercial sledge-cryomicrotome. Photography of the cut surfaces of the specimen, usually at distances of 0.25 to 0.50 mm, allows natural-colour reproduction of minute detail, e.g. the melanin cell area in the cochlea, the smallest vessels on the ossicular surfaces, and the origin of the cochlear aqueduct at the basal turn of the cochlea. By correlating the photographs with images from the corresponding tomographic planes accurate information is obtained for interpretation of the radiographic images. A combination of the two techniques facilitates a detailed study and is a valuable aid in the teaching of temporal bone anatomy.


Author(s):  
Beomcho Jun ◽  
Sunwha Song

Abstract Objective This paper describes the construction of portals for electrode placement during cochlear implantation and emphasises the utility of pre-operative temporal bone three-dimensional computed tomography. Methods Temporal bone three-dimensional computed tomography was used to plan portal creation for electrode insertion. Results Pre-operative temporal bone three-dimensional computed tomography can be used to determine the orientation of temporal bone structures, which is important for mastoidectomy, posterior tympanotomy and cochleostomy, and when using the round window approach. Conclusion It is essential to create appropriate portals (from the mastoid cortex to the cochlea) in a step-by-step manner, to ensure the safe insertion of electrodes into the scala tympani. Pre-operative three-dimensional temporal bone computed tomography is invaluable in this respect.


2009 ◽  
Vol 124 (2) ◽  
pp. 119-125 ◽  
Author(s):  
A P George ◽  
R De

AbstractObjective:We aimed to review the history of anatomical dissection, and to examine how modern educational techniques will change the way temporal bone dissection is taught to otolaryngology trainees.Method:Review of the literature using Medline, Embase and PubMed database searches.Results:Temporal bone anatomy has traditionally been taught using cadaveric specimens. However, resources such as three-dimensional reconstructed models and ‘virtual reality’ temporal bone simulators have a place in educating the otolaryngology trainee.Conclusion:We should encourage the use of fresh frozen cadaveric temporal bone specimens for future otologists. Artificial three-dimensional models and virtual reality temporal bone simulators can be used to educate junior trainees, thus conserving the scarce resource of cadaveric bones.


2005 ◽  
Vol 119 (9) ◽  
pp. 693-698 ◽  
Author(s):  
Beom-Cho Jun ◽  
Sun-Wha Song ◽  
Ju-Eun Cho ◽  
Chan-Soon Park ◽  
Dong-Hee Lee ◽  
...  

The aim of this study was to investigate the usefulness of a three-dimensional (3D) reconstruction of computed tomography (CT) images in determining the anatomy and topographic relationship between various important structures. Using 40 ears from 20 patients with various otological diseases, a 3D reconstruction based on the image data from spiral high-resolution CT was performed by segmentation, volume-rendering and surface-rendering algorithms on a personal computer. The 3D display of the middle and inner ear structures was demonstrated in detail. Computer-assisted measurements, many of which could not be easily measured in vivo, of the reconstructed structures provided accurate anatomic details that improved the surgeon’s understanding of spatial relationships. A 3D reconstruction of temporal bone CT might be useful for education and increasing understanding of the anatomical structures of the temporal bone. However, it will be necessary to confirm the correlation between the 3D reconstructed images and histological sections through a validation study.


1988 ◽  
Vol 98 (3) ◽  
pp. 195-202 ◽  
Author(s):  
Akira Takagi ◽  
Isamu Sando ◽  
Akira Takagi ◽  
Isamu Sando

It is very valuable for temporal bone morphologists to be able to recognize temporal bone serial sections in three dimensions and to be able to measure temporal bone structures three-dimensionally. We can now do 3-dimensional reconstruction to visualize the structures of vestibular endorgans (utricular and saccular maculae) and measure these endorgans in space by means of a small computer system and software that we developed. As well as obtaining the dimensions—such as length and area—of the utricular and saccular maculae, we also found that (1) most of the utricular macula lies in one plane, which is the same as the plane of the lateral semicircular canal, (2) the saccular macula is shaped like part of a sphere, and (3) the angle between the two maculae is less than a right angle. Such knowledge is indispensable to the evaluation of the function of the utricular and saccular maculae.)


1989 ◽  
Vol 98 (7) ◽  
pp. 515-522 ◽  
Author(s):  
Akira Takagi ◽  
Isamu Sando

To visualize the three-dimensional (3-D) shapes of structures in the temporal bone from histologic sections, we developed computer software to create computer-generated 3-D images from two-dimensional (2-D) materials. Using those images, we have been able to measure these structures in three dimensions. This means that quantitative 3-D measurements can be performed regardless of the angle at which the specimen was cut. This report describes this method for 3-D reconstruction and measurement and discusses its implications. For instance, in addition to showing the 3-D shape of the cochlea from different angles, we have been able to measure the length of the cochlea and have shown that measurements made by use of the conventional 2-D graphic reconstruction method can be distorted considerably by variations in cutting angle of the specimen.


Sign in / Sign up

Export Citation Format

Share Document