Reexamining the Automobile’s Past: What Were the Critical Factors That Determined the Emergence of the Internal Combustion Engine as the Dominant Automotive Technology?

2021 ◽  
Vol 41 (2-3) ◽  
pp. 58-71
Author(s):  
Constantine Hadjilambrinos

At the end of the 19th-century three technologies had emerged as sources of motive power for the automobile: steam, internal combustion, and electric motors. In 1900, in the United States and around the world, each of these powered a roughly equal number of automobiles. Thus, the early period of automobile development offers fertile ground for the study of technological path choice. At that time, it appeared that the electric motor was poised to become the dominant automotive technology. However, the internal combustion engine achieved this status instead. Although a large number of studies have examined the history of the automobile with a view to determining the reasons for the emergence of the internal combustion engine as the dominant technology for the car engine (especially its choice over the electric motor), no consensus has emerged of what the critical factors were. A close reexamining of the history allows us to identify the years 1900-1904 as the period during which the automobile’s technological path was determined. A review of the conditions prevailing during this period and the stages of development of the sociotechnical systems in which each of the alternative automotive technologies was embedded helps us identify the aspiration for touring as the key factor fixing the path for the technological development of the automobile from that point on.

Author(s):  
Oleksandr Gryshchuk ◽  
Volodymyr Hladchenko ◽  
Uriy Overchenko

This article looks at some comparative statistics on the development and use of electric vehicles (hereinafter referred to as EM) as an example of sales and future sales forecasts for EM in countries that focus on environmental conservation. Examples of financial investments already underway and to be made in the near future by the largest automakers in the development and distribution of EM in the world are given. Steps are taken to improve the environmental situation in countries (for example, the prohibition of entry into the city center), the scientific and applied problem of improving the energy efficiency and environmental safety of the operation of wheeled vehicles (hereinafter referred to as the CTE). The basic and more widespread schemes of conversion of the internal combustion engine car (hereinafter -ICE) to the electric motor car (by replacing the gasoline or diesel electric motor), as well as the main requirements that must be observed for the safe use and operation of the electric vehicle. The problem is solved by justifying the feasibility of re-equipment of the KTZ by replacing the internal combustion engine with an electric motor. On the basis of the statistics collected by the State Automobile Transit Research Institute on the number of issued conclusions of scientific and technical expertise regarding the approval of the possibility of conversion of a car with an internal combustion engine (gasoline or diesel) to a car with an electric motor (electric vehicle), the conclusions on the feasibility of such conclusion were made. Keywords: electricvehicles, ecological safety, electricmotor, statistics provided, car, vehicle by replacing.


2020 ◽  
Vol 10 (16) ◽  
pp. 5467
Author(s):  
Po-Tuan Chen ◽  
Cheng-Jung Yang ◽  
Kuohsiu David Huang

To avoid unnecessary power loss during switching between the various power sources of a composite electric vehicle while achieving smooth operation, this study focuses on the development and dynamic simulation analysis of a control system for the power of a parallel composite vehicle. This system includes a power integration and distribution mechanism, which enables the two power sources of the internal combustion engine and electric motor to operate independently or in coordination to meet the different power-output requirements. The integration of the electric motor and battery-charging engine reduces the system complexity. To verify the working efficiency of the energy control strategy for the power system, the NEDC2000 cycle is used for the vehicle driving test, a fuzzy logic controller is established using Matlab/Simulink, and the speed and torque analysis of the components related to power system performance are conducted. Through a dynamic simulation, it is revealed that this fuzzy logic controller can adjust the two power sources (the motor and internal combustion engine) appropriately. The internal combustion engine can be maintained in the optimal operating region with low, medium, and high driving speeds.


2010 ◽  
Vol 132 (07) ◽  
pp. 40-44
Author(s):  
Frank Wicks

This article focuses on the engineering credit that should be given to the bicycle designs and its hand in today’s technological innovations. Design improvements during the first 90 years of the bicycle’s history provided much of the initial technology that was extended to modern motorized forms of transportation. More important than the bicycle’s effect on the close of the 19th century was its influence on the 20th. The most common hybrid vehicle of the future may not be the now familiar four-wheel automobile combining an internal combustion engine and electric motor, but the electric bicycle that can be powered either by a rider’s muscles or energy stored in a battery. A development like that would be almost full circle. The only difference between that future and the first safety bicycle would be that electric power was harnessed along the way.


Author(s):  
Naveen Kumar Chandramohan ◽  
Mohanraj Shanmugam ◽  
S. Sathiyamurthy ◽  
S. Tamil Prabakaran ◽  
S. Saravanakumar ◽  
...  

The article is devoted to the development of a generalized methodology for calculating the joint characteristics of an internal combustion engine and transmission of a mobile unit. The technique allows considering transmissions of various physical nature: electric, hydraulic. The peculiarity of the technique is that the power transmission of any physical nature can be represented by a generalized model, a four-terminal device, the input of which is affected by the values of Мin, nin, and the output is Mout, nout. As a result of the calculations, graphical dependencies of the joint characteristics of the internal combustion engine and transmission, the efficiency of the generator and the electric motor, and the mechanical and electromechanical characteristics of the electric motor are obtained.


2020 ◽  
Vol 10 (5) ◽  
pp. 1712 ◽  
Author(s):  
Hsiu-Ying Hwang ◽  
Tian-Syung Lan ◽  
Jia-Shiun Chen

In order to achieve better performance of fuel consumption in hybrid vehicles, the internal combustion engine is controlled to operate under a better efficient zone and often turned off and on during driving. However, while starting or shifting the driving mode, the instantaneous large torque from the engine or electric motor may occur, which can easily lead to a high vibration of the elastomer on the driveline. This results in decreased comfort. A two-mode power-split hybrid system model with elastomers was established with MATLAB/Simulink. Vibration reduction control strategies, Pause Cancelation strategy (PC), and PID control were developed in this research. When the system detected a large instantaneous torque output on the internal combustion engine or driveline, the electric motor provided corresponding torque to adjust the torque transmitted to the shaft mitigating the vibration. To the research results, in the two-mode power-split hybrid system, PC was able to mitigate the vibration of the engine damper by about 60%. However, the mitigation effect of PID and PC-PID was better than PC, and the vibration was able to converge faster when the instantaneous large torque input was made. In the frequency response, the effect of the PID blocking vibration source came from the elastomer was about 75%, while PC-PID additionally reduced 8% by combining the characteristics of the two control methods.


2018 ◽  
Vol 19 (10) ◽  
pp. 627-632
Author(s):  
A. A. Kolesnikov ◽  
S. D. Kaliy ◽  
I. A. Radionov ◽  
O. I. Yakimenko

The problem of control of a hybrid power plant of a car consisting of an internal combustion engine, a synchronous electric motor with permanent magnets and a synchronous generator is considered. The formation of the control effect is carried out taking into account the connection of the above objects with each other with the help of planetary transmission. The mathematical models of the three listed engines are nonlinear with several control channels. In addition, the principle of the hybrid power plant requires the simultaneous operation of these engines and, accordingly, the construction of the necessary interrelated control actions. To synthesize the laws of vector control of a hybrid power plant, the method of analytical construction of aggregated regulators (ADAR) is used. Within the framework of this method, it is possible to work with a complete nonlinear control object model. Unlike the traditional approach of constructing a separate stabilizing control for each control channel, this method uses co-control over all variables to transfer the object to the desired state. In this case,for a number of variants of control algorithms, the communication between the control channels is carried out not indirectly, through the control object, but directly formed in the regulator. In addition, the control law takes into account unknown external disturbances, which were compensated using the principle of integral adaptation. In this paper, one of the modes of operation of a hybrid power plant is shown during the acceleration of the car. First, only the electric motor works, as the car accelerates, the internal combustion engine is connected, and at high speeds only the internal combustion engine works. This mode of operation of the hybrid power plant allows using both engines in the most convenient range of angular speeds, which leads to an economical fuel consumption and a charge of the storage batteries. In addition, the second electric motor operates in the generator mode and transfers a part of the mechanical moment to recharge the batteries.


2010 ◽  
Vol 5 (1) ◽  
pp. 75-94 ◽  
Author(s):  
Nuno Luís Madureira

AbstractThis article explains how oil as an energy carrier evolved alongside the technology of the steam engine. In practical terms, fuel oil was adapted to machines that were originally devised to be coal-fuelled and this led to the flexible switchover between energy carriers. The article links the micro account of technological developments with the macro records of energy consumption, to reveal how steam technology set the stage for the commoditization of oil, the customary fuel of the internal combustion engine. The analysis of the oil–steam combine embraces its diffusion across leading producing nations such as Russia and the United States, the diffusion in industrial and transport activities in South America, and the diffusion throughout European navies. What was at stake was the transformation of oil into a geostrategic good and the triggering of an international race for the seizure of fossil fuels.


Sign in / Sign up

Export Citation Format

Share Document