scholarly journals Repeated social defeat induces transient glial activation and brain hypometabolism: A positron emission tomography imaging study

2017 ◽  
Vol 39 (3) ◽  
pp. 439-453 ◽  
Author(s):  
Paula Kopschina Feltes ◽  
Erik FJ de Vries ◽  
Luis E Juarez-Orozco ◽  
Ewelina Kurtys ◽  
Rudi AJO Dierckx ◽  
...  

Psychosocial stress is a risk factor for the development of depression. Recent evidence suggests that glial activation could contribute to the development of depressive-like behaviour. This study aimed to evaluate in vivo whether repeated social defeat (RSD) induces short- and long-term inflammatory and metabolic alterations in the brain through positron emission tomography (PET). Male Wistar rats ( n = 40) were exposed to RSD by dominant Long-Evans rats on five consecutive days. Behavioural and biochemical alterations were assessed at baseline, day 5/6 and day 24/25 after the RSD protocol. Glial activation (11C-PK11195 PET) and changes in brain metabolism (18F-FDG PET) were evaluated on day 6, 11 and 25 (short-term), and at 3 and 6 months (long-term). Defeated rats showed transient depressive- and anxiety-like behaviour, increased corticosterone and brain IL-1β levels, as well as glial activation and brain hypometabolism in the first month after RSD. During the third- and six-month follow-up, no between-group differences in any investigated parameter were found. Therefore, non-invasive PET imaging demonstrated that RSD induces transient glial activation and reduces brain glucose metabolism in rats. These imaging findings were associated with stress-induced behavioural changes and support the hypothesis that neuroinflammation could be a contributing factor in the development of depression.

2015 ◽  
Vol 58 (14) ◽  
pp. 5538-5547 ◽  
Author(s):  
Nikolai M. Evdokimov ◽  
Peter M. Clark ◽  
Graciela Flores ◽  
Timothy Chai ◽  
Kym F. Faull ◽  
...  

2013 ◽  
Vol 26 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Jong-Hoon Kim ◽  
Young-Don Son ◽  
Hang-Keun Kim ◽  
Sang-Yoon Lee ◽  
Young-Bo Kim ◽  
...  

ObjectiveHuman impulsivity is a complex multidimensional construct encompassing cognitive, emotional, and behavioural aspects. Previous animal studies have suggested that striatal dopamine receptors play a critical role in impulsivity. In this study, we investigated the relationship between self-reported impulsiveness and dopamine D2/3 receptor availability in striatal subdivisions in healthy subjects using high-resolution positron emission tomography (PET) with [11C]raclopride.MethodsTwenty-one participants completed 3-T magnetic resonance imaging and high-resolution PET scans with [11C]raclopride. The trait of impulsiveness was measured using the Barratt Impulsiveness Scale (BIS-11). Partial correlation analysis was performed between BIS-11 scores and D2/3 receptor availability in striatal subregions, controlling for the confounding effects of temperament characteristics that are conceptually or empirically related to dopamine, which were measured by the Temperament and Character Inventory.ResultsThe analysis revealed that the non-planning (p = 0.004) and attentional (p = 0.007) impulsiveness subscale scores on the BIS-11 had significant positive correlations with D2/3 receptor availability in the pre-commissural dorsal caudate. There was a tendency towards positive correlation between non-planning impulsiveness score and D2/3 receptor availability in the post-commissural caudate.ConclusionThese results suggest that cognitive subtrait of impulsivity is associated with D2/3 receptor availability in the associative striatum that plays a critical role in cognitive processes involving attention to detail, judgement of alternative outcomes, and inhibitory control.


Biomaterials ◽  
2012 ◽  
Vol 33 (16) ◽  
pp. 4147-4156 ◽  
Author(s):  
Hao Hong ◽  
Yin Zhang ◽  
Jonathan W. Engle ◽  
Tapas R. Nayak ◽  
Charles P. Theuer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document