Dopamine D2/3 receptor availability and human cognitive impulsivity: a high-resolution positron emission tomography imaging study with [11C]raclopride

2013 ◽  
Vol 26 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Jong-Hoon Kim ◽  
Young-Don Son ◽  
Hang-Keun Kim ◽  
Sang-Yoon Lee ◽  
Young-Bo Kim ◽  
...  

ObjectiveHuman impulsivity is a complex multidimensional construct encompassing cognitive, emotional, and behavioural aspects. Previous animal studies have suggested that striatal dopamine receptors play a critical role in impulsivity. In this study, we investigated the relationship between self-reported impulsiveness and dopamine D2/3 receptor availability in striatal subdivisions in healthy subjects using high-resolution positron emission tomography (PET) with [11C]raclopride.MethodsTwenty-one participants completed 3-T magnetic resonance imaging and high-resolution PET scans with [11C]raclopride. The trait of impulsiveness was measured using the Barratt Impulsiveness Scale (BIS-11). Partial correlation analysis was performed between BIS-11 scores and D2/3 receptor availability in striatal subregions, controlling for the confounding effects of temperament characteristics that are conceptually or empirically related to dopamine, which were measured by the Temperament and Character Inventory.ResultsThe analysis revealed that the non-planning (p = 0.004) and attentional (p = 0.007) impulsiveness subscale scores on the BIS-11 had significant positive correlations with D2/3 receptor availability in the pre-commissural dorsal caudate. There was a tendency towards positive correlation between non-planning impulsiveness score and D2/3 receptor availability in the post-commissural caudate.ConclusionThese results suggest that cognitive subtrait of impulsivity is associated with D2/3 receptor availability in the associative striatum that plays a critical role in cognitive processes involving attention to detail, judgement of alternative outcomes, and inhibitory control.

2017 ◽  
Vol 39 (3) ◽  
pp. 439-453 ◽  
Author(s):  
Paula Kopschina Feltes ◽  
Erik FJ de Vries ◽  
Luis E Juarez-Orozco ◽  
Ewelina Kurtys ◽  
Rudi AJO Dierckx ◽  
...  

Psychosocial stress is a risk factor for the development of depression. Recent evidence suggests that glial activation could contribute to the development of depressive-like behaviour. This study aimed to evaluate in vivo whether repeated social defeat (RSD) induces short- and long-term inflammatory and metabolic alterations in the brain through positron emission tomography (PET). Male Wistar rats ( n = 40) were exposed to RSD by dominant Long-Evans rats on five consecutive days. Behavioural and biochemical alterations were assessed at baseline, day 5/6 and day 24/25 after the RSD protocol. Glial activation (11C-PK11195 PET) and changes in brain metabolism (18F-FDG PET) were evaluated on day 6, 11 and 25 (short-term), and at 3 and 6 months (long-term). Defeated rats showed transient depressive- and anxiety-like behaviour, increased corticosterone and brain IL-1β levels, as well as glial activation and brain hypometabolism in the first month after RSD. During the third- and six-month follow-up, no between-group differences in any investigated parameter were found. Therefore, non-invasive PET imaging demonstrated that RSD induces transient glial activation and reduces brain glucose metabolism in rats. These imaging findings were associated with stress-induced behavioural changes and support the hypothesis that neuroinflammation could be a contributing factor in the development of depression.


2001 ◽  
Vol 21 (9) ◽  
pp. 1034-1057 ◽  
Author(s):  
Osama Mawlawi ◽  
Diana Martinez ◽  
Mark Slifstein ◽  
Allegra Broft ◽  
Rano Chatterjee ◽  
...  

Dopamine transmission in the ventral striatum (VST), a structure which includes the nucleus accumbens, ventral caudate, and ventral putamen, plays a critical role in the pathophysiology of psychotic states and in the reinforcing effects of virtually all drugs of abuse. The aim of this study was to assess the accuracy and precision of measurements of D2 receptor availability in the VST obtained with positron emission tomography on the high-resolution ECAT EXACT HR+ scanner (Siemens Medical Systems, Knoxville, TN, U.S.A.). A method was developed for identification of the boundaries of the VST on coregistered high-resolution magnetic resonance imaging scans. Specific-to-nonspecific partition coefficient (V3″) and binding potential (BP) of [11C]raclopride were measured twice in 10 subjects, using the bolus plus constant infusion method. [11C]Raclopride V3″ in the VST (1.86 ± 0.29) was significantly lower than in the dorsal caudate (DCA, 2.33 ± 0.28) and dorsal putamen (DPU, 2.99 ± 0.26), an observation consistent with postmortem studies. The reproducibility of V3″ and BP were appropriate and similar in VST (V3″ test–retest variability of 8.2% ± 6.2%, intraclass correlation coefficient = 0.83), DCA (7.7% ± 5.1%, 0.77), DPU (6.0% ± 4.1%, 0.71), and striatum as a whole (6.3% ± 4.1%, 0.78). Partial volume effects analysis revealed that activities in the VST were significantly contaminated by counts spilling over from the adjacent DCA and DPU: 70% ± 5% of the specific binding measured in the VST originated from D2 receptors located in the VST, whereas 12% ± 3% and 18% ± 3% were contributed by D2 receptors in the DCA and DPU, respectively. Thus, accuracy of D2 receptor measurement is improved by correction for partial voluming effects. The demonstration of an appropriate accuracy and precision of D2 receptor measurement with [11C]raclopride in the VST is the first critical step toward the use of this ligand in the study of synaptic dopamine transmission at D2 receptors in the VST using endogenous competition techniques.


Sign in / Sign up

Export Citation Format

Share Document