scholarly journals Role of deep medullary veins in pathogenesis of lacunes: Longitudinal observations from the CIRCLE study

2019 ◽  
Vol 40 (9) ◽  
pp. 1797-1805 ◽  
Author(s):  
Ying Zhou ◽  
Qingqing Li ◽  
Ruiting Zhang ◽  
Wenhua Zhang ◽  
Shenqiang Yan ◽  
...  

Our purpose is to assess the role of deep medullary veins in pathogenesis of lacunes in patients with cerebral small vessel disease (cSVD). We included patients with baseline and 2.5-year follow-up MRI in CIRCLE study. Susceptibility Weighted Imaging-Phase images were used to evaluate deep medullary veins based on a brain region-based visual score, and T2-Fluid-Attenuated-Inversion-Recovery images were used to evaluate lacunes. Cerebral blood flow and microstructural parameters in white matter hyperintensities and normal appearing white matter were also analyzed. A total of 203 cSVD patients were analyzed and 101 (49.8%) patients had baseline lacunes. Among them, 64 patients had follow-up MRI, including 16 (25.0%) with new lacunes. The patients’ deep medullary veins median score was 9 (7–12). At baseline, high deep medullary veins score was independently associated with the presence of lacunes after adjusting for age, diabetes mellitus, white matter hyperintensities volume and cerebral blood flow or white matter microstructural parameters (all p <  0.001). Longitudinally, high deep medullary veins score was independently associated with new lacunes after adjusting for gender ( p <  0.001). The association was also independent of white matter hyperintensities volumes, cerebral blood flow or white matter microstructural parameters (all p <  0.05). Our results suggest that deep medullary veins disruption might be involved in pathogenesis of lacunes.

2019 ◽  
Vol 15 (6) ◽  
pp. 657-665 ◽  
Author(s):  
Jun Yoshida ◽  
Fumio Yamashita ◽  
Makoto Sasaki ◽  
Kunihiro Yoshioka ◽  
Shunrou Fujiwara ◽  
...  

Background Although patients with improved cognition after carotid endarterectomy usually exhibit postoperative restoration of cerebral blood flow, less than half of patients with such cerebral blood flow change have postoperatively improved cognition. Cerebral small vessel disease on magnetic resonance imaging is associated with irreversible cognitive impairment. Aims The purpose of the present prospective study was to determine whether pre-existing cerebral small vessel disease affects cognitive improvement after carotid endarterectomy. Methods Brain MR imaging was performed preoperatively, and the number or grade of each cerebral small vessel disease was determined in 80 patients undergoing carotid endarterectomy for ipsilateral internal carotid artery stenosis (≥70%). The volume of white matter hyperintensities relative to the intracranial volume was also calculated. Brain perfusion single-photon emission computed tomography and neuropsychological testing were performed preoperatively and two months postoperatively. Based on these data, a postoperative increase in cerebral blood flow and postoperative improved cognition, respectively, were determined. Results Logistic regression analysis using the sequential backward elimination approach revealed that a postoperative increase in cerebral blood flow (95% confidence interval [CI], 10.74–3730.00; P = 0.0004) and the relative volume of white matter hyperintensities (95% CI, 0.01–0.63; P = 0.0314) were significantly associated with postoperative improved cognition. Although eight of nine patients with postoperative improved cognition exhibited both a relative volume of white matter hyperintensities <0.65% and a postoperative increase in cerebral blood flow, none of patients with a relative volume of white matter hyperintensities ≥0.65% had postoperative improved cognition regardless of any postoperative change in cerebral blood flow. Conclusion Pre-existing cerebral white matter hyperintensities on magnetic resonance imaging adversely affect cognitive improvement after carotid endarterectomy.


2003 ◽  
Vol 23 (5) ◽  
pp. 599-604 ◽  
Author(s):  
Rivka van den Boom ◽  
Saskia A. Lesnik Oberstein ◽  
Aart Spilt ◽  
Faiza Behloul ◽  
Michel D. Ferrari ◽  
...  

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a hereditary small-vessel disease caused by mutations in the NOTCH3 gene on chromosome 19. On magnetic resonance imaging (MRI), subcortical white matter hyperintensities and lacunar infarcts are visualized. It is unknown whether a decrease in cerebral blood flow or cerebrovascular reactivity is primarily responsible for the development of white matter hyperintensities and lacunar infarcts. The authors used phase-contrast MRI in 40 NOTCH3 mutation carriers (mean age 45 ± 10 years) and 22 nonmutated family members (mean age 39 ± 12 years), to assess baseline total cerebral blood flow (TCBF) and cerebrovascular reactivity after acetazolamide. Mean baseline TCBF was significantly decreased in NOTCH3 mutation carriers. In young subjects, baseline TCBF was significantly lower than in nonmutation carriers (mean difference 124 mL/min). Furthermore, baseline TCBF did not differ significantly between mutation carriers with minimal and mutation carriers with moderate or severe white matter hyperintensities. No significant difference in mean cerebrovascular reactivity was found between mutation carriers and nonmutation carriers. This study suggests that a decrease in baseline TCBF in NOTCH3 mutation carriers precedes the development of white matter hyperintensities.


2018 ◽  
Vol 30 (1) ◽  
pp. 147-158 ◽  
Author(s):  
Mark Duncan Findlay ◽  
Jesse Dawson ◽  
David Alexander Dickie ◽  
Kirsten P. Forbes ◽  
Deborah McGlynn ◽  
...  

BackgroundThe immediate and longer-term effects of hemodialysis on cerebral circulation, cerebral structure, and cognitive function are poorly understood.MethodsIn a prospective observational cohort study of 97 adults (median age 59 years) receiving chronic hemodialysis, we used transcranial Doppler ultrasound to measure cerebral arterial mean flow velocity (MFV) throughout dialysis. Using a well validated neuropsychological protocol, we assessed cognitive function during and off dialysis and after 12 months of treatment. We also used brain magnetic resonance imaging (MRI) to assess atrophy, white matter hyperintensities (WMHs), and diffusion parameters, and tested correlations between MFV, cognitive scores, and changes on MRI.ResultsMFV declined significantly during dialysis, correlating with ultrafiltrate volumes. Percentage of decline in MFV correlated with intradialytic decline in cognitive function, including global function, executive function, and verbal fluency. At follow-up, 73 patients were available for repeat testing, 34 of whom underwent repeat MRI. In a subgroup of patients followed for 12 months of continued dialysis, percentage of decline in MFV correlated significantly with lower global and executive function and with progression of WMH burden (a marker of small vessel disease). Twelve of 15 patients who received renal transplants during follow-up had both early and follow-up off-dialysis assessments. After transplant, patients’ memory (on a delayed recall test) improved significantly; increased fractional anisotropy of white matter (a measure of cerebral diffusion) in these patients correlated with improving executive function.ConclusionsPatients undergoing hemodialysis experience transient decline in cerebral blood flow, correlating with intradialytic cognitive dysfunction. Progressive cerebrovascular disease occurred in those continuing dialysis, but not in transplanted patients. Cognitive function and cerebral diffusion improved after transplant.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Rikke B Dalby ◽  
Simon F Eskildsen ◽  
Poul Videbech ◽  
Jesper Frandsen ◽  
Kim Mouridsen ◽  
...  

Abstract White matter hyperintensities of presumed vascular origin are frequently observed on magnetic resonance imaging in normal aging. They are typically found in cerebral small vessel disease and suspected culprits in the etiology of complex age- and small vessel disease-related conditions, such as late-onset depression. White matter hyperintensities may interfere with surrounding white matter metabolic demands by disrupting fiber tract integrity. Meanwhile, risk factors for small vessel disease are thought to reduce tissue oxygenation, not only by reducing regional blood supply, but also by impairing capillary function. To address white matter oxygen supply–demand balance, we estimated voxel-wise capillary density as an index of resting white matter metabolism, and combined estimates of blood supply and capillary function to calculate white matter oxygen availability. We conducted a cross-sectional study with structural, perfusion- and diffusion-weighted magnetic resonance imaging in 21 patients with late-onset depression and 21 controls. We outlined white matter hyperintensities and used tractography to identify the tracts they intersect. Perfusion data comprised cerebral blood flow, blood volume, mean transit time and relative transit time heterogeneity—the latter a marker of capillary dysfunction. Based on these, white matter oxygenation was calculated as the steady state cerebral metabolic rate of oxygen under the assumption of normal tissue oxygen tension and vice versa. The number, volume and perfusion characteristics of white matter hyperintensities did not differ significantly between groups. Hemodynamic data showed white matter hyperintensities to have lower blood flow and blood volume, but higher relative transit time heterogeneity, than normal-appearing white matter, resulting in either reduced capillary metabolic rate of oxygen or oxygen tension. Intersected tracts showed significantly lower blood flow, blood volume and capillary metabolic rate of oxygen than normal-appearing white matter. Across groups, lower lesion oxygen tension was associated with higher lesion number and volume. Compared with normal-appearing white matter, tissue oxygenation is significantly reduced in white matter hyperintensities as well as the fiber tracts they intersect, independent of parallel late-onset depression. In white matter hyperintensities, reduced microvascular blood volume and concomitant capillary dysfunction indicate a severe oxygen supply–demand imbalance with hypoxic tissue injury. In intersected fiber tracts, parallel reductions in oxygenation and microvascular blood volume are consistent with adaptations to reduced metabolic demands. We speculate, that aging and vascular risk factors impair white matter hyperintensity perfusion and capillary function to create hypoxic tissue injury, which in turn affect the function and metabolic demands of the white matter tracts they disrupt.


2020 ◽  
Vol 16 (S6) ◽  
Author(s):  
Aditi Balakrishnan ◽  
Vivek Tiwari ◽  
M.L. Abhishek ◽  
Naren P. Rao ◽  
Vijayalakshmi Ravindranath ◽  
...  

2009 ◽  
Vol 172 (2) ◽  
pp. 117-120 ◽  
Author(s):  
Adam M. Brickman ◽  
Amir Zahra ◽  
Jordan Muraskin ◽  
Jason Steffener ◽  
Christopher M. Holland ◽  
...  

2017 ◽  
Vol 77 (3) ◽  
pp. 441-448 ◽  
Author(s):  
Efrosini Papadaki ◽  
Antonis Fanouriakis ◽  
Eleftherios Kavroulakis ◽  
Dimitra Karageorgou ◽  
Prodromos Sidiropoulos ◽  
...  

ObjectivesCerebral perfusion abnormalities have been reported in systemic lupus erythematosus (SLE) but their value in distinguishing lupus from non-lupus-related neuropsychiatric events remains elusive. We examined whether dynamic susceptibility contrast-enhanced perfusion MRI (DSC-MRI), a minimally invasive and widely available method of cerebral perfusion assessment, may assist neuropsychiatric SLE (NPSLE) diagnosis.MethodsIn total, 76patients with SLE (37 primary NPSLE, 16 secondary NPSLE, 23 non-NPSLE) and 31 healthy controls underwent conventional MRI (cMRI) and DSC-MRI. Attribution of NPSLE to lupus or not was based on multidisciplinary assessment including cMRI results and response to treatment. Cerebral blood volume and flow were estimated in 18 normal-appearing white and deep grey matter areas.ResultsThe most common manifestations were mood disorder, cognitive disorder and headache. Patients with primary NPSLE had lower cerebral blood flow and volume in several normal-appearing white matter areas compared with controls (P<0.0001) and lower cerebral blood flow in the semioval centre bilaterally, compared with non-NPSLE and patients with secondary NPSLE (P<0.001). A cut-off for cerebral blood flow of 0.77 in the left semioval centre discriminated primary NPSLE from non-NPSLE/secondary NPSLE with 80% sensitivity and 67%–69% specificity. Blood flow values in the left semioval centre showed substantially higher sensitivity than cMRI (81% vs 19%–24%) for diagnosing primary NPSLE with the combination of the two modalities yielding 94%–100% specificity in discriminating primary from secondary NPSLE.ConclusionPrimary NPSLE is characterised by significant hypoperfusion in cerebral white matter that appears normal on cMRI. The combination of DSC-MRI-measured blood flow in the brain semioval centre with conventional MRI may improve NPSLE diagnosis.


2021 ◽  
Vol 15 ◽  
Author(s):  
Kay Jann ◽  
Xingfeng Shao ◽  
Samantha J. Ma ◽  
Steven Y. Cen ◽  
Lina D’Orazio ◽  
...  

Cerebral small vessel disease (cSVD) affects arterioles, capillaries, and venules and can lead to cognitive impairments and clinical symptomatology of vascular cognitive impairment and dementia (VCID). VCID symptoms are similar to Alzheimer’s disease (AD) but the neurophysiologic alterations are less well studied, resulting in no established biomarkers. The purpose of this study was to evaluate cerebral blood flow (CBF) measured by 3D pseudo-continuous arterial spin labeling (pCASL) as a potential biomarker of VCID in a cohort of elderly Latinx subjects at risk of cSVD. Forty-five elderly Latinx subjects (12 males, 69 ± 7 years) underwent repeated MRI scans ∼6 weeks apart. CBF was measured using 3D pCASL in the whole brain, white matter and 4 main vascular territories (leptomeningeal anterior, middle, and posterior cerebral artery (leptoACA, leptoMCA, leptoPCA), as well as MCA perforator). The test-retest repeatability of CBF was assessed by intra-class correlation coefficient (ICC) and within-subject coefficient of variation (wsCV). Absolute and relative CBF was correlated with gross cognitive measures and domain specific assessment of executive and memory function, vascular risks, and Fazekas scores and volumes of white matter hyperintensity (WMH). Neurocognitive evaluations were performed using Montreal Cognitive Assessment (MoCA) and neuropsychological test battery in the Uniform Data Set v3 (UDS3). Good to excellent test-retest repeatability was achieved (ICC = 0.77–0.85, wsCV 3–9%) for CBF measurements in the whole brain, white matter, and 4 vascular territories. Relative CBF normalized by global mean CBF in the leptoMCA territory was positively correlated with the executive function composite score, while relative CBF in the leptoMCA and MCA perforator territory was positively correlated with MoCA scores, controlling for age, gender, years of education, and testing language. Relative CBF in WM was negatively correlated with WMH volume and MoCA scores, while relative leptoMCA CBF was positively correlated with WMH volume. Reliable 3D pCASL CBF measurements were achieved in the cohort of elderly Latinx subjects. Relative CBF in the leptomeningeal and perforator MCA territories were the most likely candidate biomarker of VCID. These findings need to be replicated in larger cohorts with greater variability of stages of cSVD.


2017 ◽  
Author(s):  
Mahsa Dadar ◽  
Yashar Zeighami ◽  
Yvonne Yau ◽  
Seyed-Mohammad Fereshtehnejad ◽  
Josefina Maranzano ◽  
...  

AbstractObjectiveWhite Matter Hyperintensities (WMHs) are associated with cognitive decline in normative aging and Alzheimer’s disease. However, the pathogenesis of cognitive decline in Parkinson’s disease (PD) is not directly related to vascular causes, and therefore the role of WMHs in PD remains unclear. If WMH has a higher impact on cognitive decline in PD, vascular pathology should be assessed and treated with a higher priority in this population. Here we investigate whether WMH leads to increased cognitive decline in PD, and if these effects relate to cortical thinningMethodsTo investigate the role of WMHs in PD, it is essential to study recently-diagnosed/non-treated patients.De novoPD patients and age-matched controls (NPD=365,NControl=174) with FLAIR/T2-weighted scans at baseline were selected from Parkinson’s Progression Markers Initiative (PPMI). WMHs and cortical thickness were measured to analyse the relationship between baseline WMHs and future cognitive decline (follow-up:4.09±1.14 years) and cortical thinning (follow-up:1.05±0.10 years).ResultsHigh WMH load (WMHL) at baseline in PD was associated with increased cognitive decline, significantly more than i) PDs with low WMHL and ii) controls with high WMHL. Furthermore, PD patients with higher baseline WMHL showed more cortical thinning in right frontal lobe than subjects with low WMHL. Cortical thinning of this region also predicted decline in performance on a cognitive test.InterpretationPresence of WMHs inde novoPD patients predicts greater future cognitive decline and cortical thinning than in normal aging. Recognizing WMHs as a potential predictor of cognitive deficit in PD provides an opportunity for timely interventions.


2016 ◽  
Vol 37 (2) ◽  
pp. 644-656 ◽  
Author(s):  
Susana Muñoz Maniega ◽  
Francesca M Chappell ◽  
Maria C Valdés Hernández ◽  
Paul A Armitage ◽  
Stephen D Makin ◽  
...  

White matter hyperintensities accumulate with age and occur in patients with stroke, but their pathogenesis is poorly understood. We measured multiple magnetic resonance imaging biomarkers of tissue integrity in normal-appearing white matter and white matter hyperintensities in patients with mild stroke, to improve understanding of white matter hyperintensities origins. We classified white matter into white matter hyperintensities and normal-appearing white matter and measured fractional anisotropy, mean diffusivity, water content (T1-relaxation time) and blood–brain barrier leakage (signal enhancement slope from dynamic contrast-enhanced magnetic resonance imaging). We studied the effects of age, white matter hyperintensities burden (Fazekas score) and vascular risk factors on each biomarker, in normal-appearing white matter and white matter hyperintensities, and performed receiver-operator characteristic curve analysis. Amongst 204 patients (34.3–90.9 years), all biomarkers differed between normal-appearing white matter and white matter hyperintensities ( P < 0.001). In normal-appearing white matter and white matter hyperintensities, mean diffusivity and T1 increased with age ( P < 0.001), all biomarkers varied with white matter hyperintensities burden ( P < 0.001; P = 0.02 signal enhancement slope), but only signal enhancement slope increased with hypertension ( P = 0.028). Fractional anisotropy showed complex age-white matter hyperintensities-tissue interactions; enhancement slope showed white matter hyperintensities-tissue interactions. Mean diffusivity distinguished white matter hyperintensities from normal-appearing white matter best at all ages. Blood–brain barrier leakage increases with hypertension and white matter hyperintensities burden at all ages in normal-appearing white matter and white matter hyperintensities, whereas water mobility and content increase as tissue damage accrues, suggesting that blood–brain barrier leakage mediates small vessel disease-related brain damage.


Sign in / Sign up

Export Citation Format

Share Document