scholarly journals Cerebral critical closing pressure and resistance-area product: the influence of dynamic cerebral autoregulation, age, and sex

2021 ◽  
pp. 0271678X2110041
Author(s):  
Ronney B Panerai ◽  
Victoria J Haunton ◽  
Osian Llwyd ◽  
Jatinder S Minhas ◽  
Emmanuel Katsogridakis ◽  
...  

Instantaneous arterial pressure-flow (or velocity) relationships indicate the existence of a cerebral critical closing pressure (CrCP), with the slope of the relationship expressed by the resistance-area product (RAP). In 194 healthy subjects (20–82 years, 90 female), cerebral blood flow velocity (CBFV, transcranial Doppler), arterial blood pressure (BP, Finapres) and end-tidal CO2 (EtCO2, capnography) were measured continuously for five minutes during spontaneous fluctuations of BP at rest. The dynamic cerebral autoregulation (CA) index (ARI) was extracted with transfer function analysis from the CBFV step response to the BP input and step responses were also obtained for the BP-CrCP and BP-RAP relationships. ARI was shown to decrease with age at a rate of −0.025 units/year in men (p = 0.022), but not in women (p = 0.40). The temporal patterns of the BP-CBFV, BP-CrCP and BP-RAP step responses were strongly influenced by the ARI (p < 0.0001), but not by sex. Age was also a significant determinant of the peak of the CBFV step response and the tail of the RAP response. Whilst the RAP step response pattern is consistent with a myogenic mechanism controlling dynamic CA, further work is needed to explore the potential association of the CrCP step response with the flow-mediated component of autoregulation.

2005 ◽  
Vol 289 (3) ◽  
pp. H1202-H1208 ◽  
Author(s):  
Ronney B. Panerai ◽  
Michelle Moody ◽  
Penelope J. Eames ◽  
John F. Potter

Dynamic cerebral autoregulation (CA) describes the transient response of cerebral blood flow (CBF) to rapid changes in arterial blood pressure (ABP). We tested the hypothesis that the efficiency of dynamic CA is increased by brain activation paradigms designed to induce hemispheric lateralization. CBF velocity [CBFV; bilateral, middle cerebral artery (MCA)], ABP, ECG, and end-tidal Pco2 were continuously recorded in 14 right-handed healthy subjects (21–43 yr of age), in the seated position, at rest and during 10 repeated presentations (30 s on-off) of a word generation test and a constructional puzzle. Nonstationarities were not found during rest or activation. Transfer function analysis of the ABP-CBFV (i.e., input-output) relation was performed for the 10 separate 51.2-s segments of data during activation and compared with baseline data. During activation, the coherence function below 0.05 Hz was significantly increased for the right MCA recordings for the puzzle tasks compared with baseline values (0.36 ± 0.16 vs. 0.26 ± 0.13, P < 0.05) and for the left MCA recordings for the word paradigm (0.48 ± 0.23 vs. 0.29 ± 0.16, P < 0.05). In the same frequency range, significant increases in gain were observed during the puzzle paradigm for the right (0.69 ± 0.37 vs. 0.46 ± 0.32 cm·s−1·mmHg−1, P < 0.05) and left (0.61 ± 0.29 vs. 0.45 ± 0.24 cm·s−1·mmHg−1, P < 0.05) hemispheres and during the word tasks for the left hemisphere (0.66 ± 0.31 vs. 0.39 ± 0.15 cm·s−1·mmHg−1, P < 0.01). Significant reductions in phase were observed during activation with the puzzle task for the right (−0.04 ± 1.01 vs. 0.80 ± 0.86 rad, P < 0.01) and left (0.11 ± 0.81 vs. 0.57 ± 0.51 rad, P < 0.05) hemispheres and with the word paradigm for the right hemisphere (0.05 ± 0.87 vs. 0.64 ± 0.59 rad, P < 0.05). Brain activation also led to changes in the temporal pattern of the CBFV step response. We conclude that transfer function analysis suggests important changes in dynamic CA during mental activation tasks.


2009 ◽  
Vol 116 (6) ◽  
pp. 513-520 ◽  
Author(s):  
Fiona G. Brodie ◽  
Emily R. Atkins ◽  
Thompson G. Robinson ◽  
Ronney B. Panerai

Spontaneous fluctuations in BP (blood pressure) and subsequent change in CBFV (cerebral blood flow velocity) in the MCA (middle cerebral artery) can be used to assess dynamic cerebral autoregulation using transfer function analysis; however, the reliability of this technique has not been assessed, in particular the contribution of intra-subject variability relative to inter-subject variability. Three bilateral CBFV, BP and RR interval recordings were performed in ten healthy volunteers on four separate occasions over a 2-week period. Data were analysed to provide the ARI (autoregulatory index), CBFV, RAP (resistance-area product) and CrCP (critical closing pressure). We also measured systolic and diastolic BP, and resting HR (heart rate). We calculated the SEM (standard error of measurement) and the ICC (intra-class correlation coefficient) and their 95% CIs (confidence intervals) for each parameter to assess their absolute (intra-subject) and relative (inter-subject) reliability. The CV (coefficient of variation) of SEM ranged from 1.7% (for CBFV) to 100.0% (for RAP), whereas the ICC was <0.5 for ARI, rising to >0.8 for CBFV and diastolic BP. These data demonstrate excellent absolute and relative reliability of CBFV, whereas ARI is of comparable reliability with the measurement of HR. Using these results it is possible to determine the sample size required to demonstrate a change in ARI, with a sample of 45 subjects in each group required to show a change in ARI of 1, whereas to detect a change in ARI >2 would require only 11 subjects per group. The results of the present study could be valuable to the future planning of cerebral autoregulation studies, but more work is needed to understand the determinants of intra-subject variability in autoregulatory parameters.


2016 ◽  
Vol 120 (12) ◽  
pp. 1434-1441 ◽  
Author(s):  
Sung-Moon Jeong ◽  
Seon-Ok Kim ◽  
Darren S. DeLorey ◽  
Tony G. Babb ◽  
Benjamin D. Levine ◽  
...  

Cerebral vasomotor reactivity (CVMR) and dynamic cerebral autoregulation (CA) are measured extensively in clinical and research studies. However, the relationship between these measurements of cerebrovascular function is not well understood. In this study, we measured changes in cerebral blood flow velocity (CBFV) and arterial blood pressure (BP) in response to stepwise increases in inspired CO2 concentrations of 3 and 6% to assess CVMR and dynamic CA in 13 healthy young adults [2 women, 32 ± 9 (SD) yr]. CVMR was assessed as percentage changes in CBFV (CVMRCBFV) or cerebrovascular conductance index (CVCi, CVMRCVCi) in response to hypercapnia. Dynamic CA was estimated by performing transfer function analysis between spontaneous oscillations in BP and CBFV. Steady-state CBFV and CVCi both increased exponentially during hypercapnia; CVMRCBFV and CVMRCVCi were greater at 6% (3.85 ± 0.90 and 2.45 ± 0.79%/mmHg) than at 3% CO2 (2.09 ± 1.47 and 0.21 ± 1.56%/mmHg, P = 0.009 and 0.005, respectively). Furthermore, CVMRCBFV was greater than CVMRCVCi during either 3 or 6% CO2 ( P = 0.017 and P < 0.001, respectively). Transfer function gain and coherence increased in the very low frequency range (0.02-0.07 Hz), and phase decreased in the low-frequency range (0.07–0.20 Hz) when breathing 6%, but not 3% CO2. There were no correlations between the measurements of CVMR and dynamic CA. These findings demonstrated influences of inspired CO2 concentrations on assessment of CVMR and dynamic CA. The lack of correlation between CVMR and dynamic CA suggests that cerebrovascular responses to changes in arterial CO2 and BP are mediated by distinct regulatory mechanisms.


2013 ◽  
Vol 114 (2) ◽  
pp. 211-216 ◽  
Author(s):  
Yojiro Ogawa ◽  
Ken Aoki ◽  
Jitsu Kato ◽  
Ken-ichi Iwasaki

Diuretic-induced mild hypovolemia with hemoconcentration reportedly improves dynamic cerebral autoregulation, whereas central hypovolemia without hemoconcentration induced by lower body negative pressure (LBNP) has no effect or impairs dynamic cerebral autoregulation. This discrepancy may be explained by different blood properties, by degrees of central hypovolemia, or both. We investigated the effects of equivalent central hypovolemia induced by furosemide administration or LBNP application on dynamic cerebral autoregulation to test our hypothesis that mild central hypovolemia due to furosemide administration enhances dynamic cerebral autoregulation in contrast to LBNP. Seven healthy male subjects received 0.4 mg/kg furosemide and LBNP, with equivalent decreases in central venous pressure (CVP). Dynamic cerebral autoregulation was assessed by spectral and transfer function analysis between beat-to-beat mean arterial blood pressure (MAP) and mean cerebral blood flow velocity (MCBFV). CVP decreased by ∼3–4 mmHg with both furosemide administration (∼26 mg) and LBNP (approximately −20 mmHg). Steady state MCBFV remained unchanged with both techniques, whereas MAP increased significantly with furosemide administration. Coherence and transfer function gain in the low and high frequency ranges with hypovolemia due to furosemide administration were significantly lower than those due to LBNP (ANOVA interaction effects, P < 0.05), although transfer function gain in the very low frequency range did not change. Our results suggest that although the decreases in CVP were equivalent between furosemide administration and LBNP, the resultant central hypovolemia differentially affected dynamic cerebral autoregulation. Mild central hypovolemia with hemoconcentration resulting from furosemide administration may enhance dynamic cerebral autoregulation compared with LBNP.


2021 ◽  
Vol 12 ◽  
Author(s):  
Navpreet Reehal ◽  
Stephanie Cummings ◽  
Michael T. Mullen ◽  
Wesley B. Baker ◽  
David Kung ◽  
...  

Objective: Transcranial Doppler is commonly used to calculate cerebral autoregulation, but measurements are typically restricted to a single cerebral artery. In exploring topographic heterogeneity, this study reports the first thorough comparison of autoregulation in all major cerebral vessels.Methods: In forty healthy adults, flow velocity was monitored in the anterior, middle, and posterior cerebral arteries, and synchronized with arterial blood pressure. A transfer function analysis provided characteristics of autoregulation by quantifying the relationship between blood pressure and cerebral blood flow velocity.Results: Phase, which quantifies the time course of autoregulation, was similar in all vessels. Gain, which quantifies the magnitude of hemodynamic regulation, was lower in posterior cerebral artery, indicative of tighter regulation. However, after adjusting for baseline flow differences in each vascular territory, normalized gain was similar in all vessels.Conclusions: Discriminating dynamic cerebral autoregulation between cerebrovascular territories is feasible with a transcranial doppler based approach. In the posterior cerebral artery of healthy volunteers, absolute flow is more tightly regulated, but relative flow regulation is consistent across cerebrovascular territories.Significance: The methodology can be applied to focal disease states such as stroke or posterior reversible encephalopathy syndrome, in which the topographic distribution of autoregulation may be particularly critical.


Author(s):  
Tsubasa Tomoto ◽  
Justin Repshas ◽  
Rong Zhang ◽  
Takashi Tarumi

Midlife aerobic exercise may significantly impact age-related changes in the cerebro- and cardiovascular regulations. This study investigated the associations of midlife aerobic exercise with dynamic cerebral autoregulation (dCA), cardiovagal baroreflex sensitivity (BRS), and central arterial stiffness. Twenty middle-aged athletes (MA) who had aerobic training for >10 years were compared with 20 young (YS) and 20 middle-aged sedentary (MS) adults. Beat-to-beat cerebral blood flow velocity, blood pressure (BP), and heart rate were measured at rest and during forced BP oscillations induced by repeated sit-stand maneuvers at 0.05 Hz. Transfer function analysis was used to calculate dCA and BRS parameters. Carotid distensibility was measured by ultrasonography. MA had the highest peak oxygen uptake (VO2peak) among all groups. During forced BP oscillations, MS showed lower BRS gain than YS, but this age-related reduction was absent in MA. Conversely, dCA was similar among all groups. At rest, BRS and dCA gains at low frequency (~0.1 Hz) were higher in the MA compared with MS and YS groups. Carotid distensibility was similar between MA and YS groups, but it was lower in the MS. Across all subjects, VO2peak was positively associated with BRS gains at rest and during forced BP oscillations (r=0.257~0.382, p=0.003~0.050) and carotid distensibility (r=0.428~0.490, p=0.001). Furthermore, dCA gain at rest and carotid distensibility were positively correlated with BRS gain at rest in YS and MA groups (all p<0.05). These findings suggest that midlife aerobic exercise improves central arterial elasticity and BRS which may contribute to CBF regulation through dCA.


2020 ◽  
Vol 128 (2) ◽  
pp. 397-409
Author(s):  
Vasilis Z. Marmarelis ◽  
Dae C. Shin ◽  
Mareike Oesterreich ◽  
Martin Mueller

The study of dynamic cerebral autoregulation (DCA) in essential hypertension has received considerable attention because of its clinical importance. Several studies have examined the dynamic relationship between spontaneous beat-to-beat arterial blood pressure data and contemporaneous cerebral blood flow velocity measurements (obtained via transcranial Doppler at the middle cerebral arteries) in the form of a linear input-output model using transfer function analysis. This analysis is more reliable when the contemporaneous effects of changes in blood CO2 tension are also taken into account, because of the significant effects of CO2 dynamic vasomotor reactivity (DVR) upon cerebral flow. In this article, we extract such input-output predictive models from spontaneous time series hemodynamic data of 24 patients with essential hypertension and 20 normotensive control subjects under resting conditions, using the novel methodology of principal dynamic modes (PDMs) that achieves improved estimation accuracy over previous methods for relatively short and noisy data. The obtained data-based models are subsequently used to compute indexes and markers that quantify DCA and DVR in each subject or patient and therefore can be used to assess the effects of essential hypertension. These model-based DCA and DVR indexes were properly defined to capture the observed effects of DCA and VR and found to be significantly different ( P < 0.05) in the hypertensive patients. We also found significant differences between patients and control subjects in the relative contribution of three PDMs to the model output prediction, a finding that offers the prospect of identifying the physiological mechanisms affected by essential hypertension when the PDMs are interpreted in terms of specific physiological mechanisms. NEW & NOTEWORTHY This article presents novel model-based methodology for obtaining diagnostic indexes of dynamic cerebral autoregulation and dynamic vasomotor reactivity in hypertension.


2019 ◽  
Vol 39 (11) ◽  
pp. 2105-2116 ◽  
Author(s):  
Kannakorn Intharakham ◽  
Lucy Beishon ◽  
Ronney B Panerai ◽  
Victoria J Haunton ◽  
Thompson G Robinson

Dynamic cerebral autoregulation (dCA) has been shown to be impaired in cerebrovascular diseases, but there is a lack of consistency across different studies and the different metrics that have been proposed for assessment. We performed a systematic review and meta-analyses involving assessment of dCA in ischemic and hemorrhagic stroke. Thirty-three articles describing assessment of dCA with transfer function analysis (TFA) were included, with meta-analyses performed for derived parameters of gain, phase and autoregulation index (ARI). A total of 1233 patients were pooled from 12 studies on acute ischemic stroke (AIS) and two studies on intracerebral hemorrhage (ICH). In comparison with controls, TFA phase of AIS was significantly reduced (nine studies), in both hemispheres ( P < 0.0001). TFA gain provided inconsistent results, with reduced values in relation to controls, for both hemispheres. The ARI (six studies) was reduced compared to controls, in both hemispheres ( P < 0.005). In ICH, gain showed higher values compared to controls for the unaffected ( P = 0.01), but not for the affected hemisphere. Meta-analyses in AIS have demonstrated that phase and the ARI index can show highly significant differences in comparison with healthy controls, while ICH have been limited by the scarcity of studies and the diversity of units adopted for gain.


2020 ◽  
Vol 598 (24) ◽  
pp. 5673-5685
Author(s):  
Ronney B. Panerai ◽  
Jatinder S. Minhas ◽  
Osian Llwyd ◽  
Angela S. M. Salinet ◽  
Emmanuel Katsogridakis ◽  
...  

2020 ◽  
Vol 9 (20) ◽  
Author(s):  
Simin Mahinrad ◽  
Behnam Sabayan ◽  
Chaney R. Garner ◽  
Donald M. Lloyd‐Jones ◽  
Farzaneh A. Sorond

Background Elevated natriuretic peptides (NP) are associated with adverse cerebrovascular conditions including stroke, cerebral small vessel disease, and dementia. However, the mechanisms underlying these associations remain unclear. In this study, we examined the relationship of NT‐proBNP (N‐terminal pro brain NP) and NT‐proANP (N‐terminal pro atrial NP) with cerebrovascular function, measured by cerebral autoregulation. Methods and Results We included 154 participants (mean age 56±4 years old) from the CARDIA (Coronary Artery Risk Development in Young Adults) cohort. NT‐proBNP and NT‐proANP were measured in blood samples from the year 25 examination using electrochemiluminescence Immunoassay and enzyme‐linked immunoassay, respectively. Dynamic cerebral autoregulation (dCA) was assessed at the year 30 examination by transcranial Doppler ultrasound, using transfer function analysis (phase and gain) of spontaneous blood pressure and flow velocity oscillations, where lower phase and higher gain reflect less efficient cerebral autoregulation. We used multivariable linear regression models adjusted for demographics, vascular risk factors, and history of kidney and cardiac diseases. Higher NT‐proBNP levels at year 25 were associated with lower phase (β [95% CI]=−5.30 lower degrees of phase [−10.05 to −0.54]) and higher gain (β [95% CI]=0.06 higher cm/s per mm Hg of gain [0.004–0.12]) at year 30. Similarly, higher NT‐proANP levels were associated with lower phase (β [95% CI]=−9.08 lower degrees of phase [−16.46 to −1.70]). Conclusions Higher circulating levels of NT‐proBNP and NT‐proANP are associated with less efficient dCA 5 years later. These findings link circulating NP to cerebral autoregulation and may be one mechanism tying NP to adverse cerebrovascular outcomes.


Sign in / Sign up

Export Citation Format

Share Document