scholarly journals Three-dimensional Motion Planning Algorithms for Steerable Needles Using Inverse Kinematics

2009 ◽  
Vol 29 (7) ◽  
pp. 789-800 ◽  
Author(s):  
Vincent Duindam ◽  
Jijie Xu ◽  
Ron Alterovitz ◽  
Shankar Sastry ◽  
Ken Goldberg
2020 ◽  
Vol 10 (24) ◽  
pp. 9137
Author(s):  
Hongwen Zhang ◽  
Zhanxia Zhu

Motion planning is one of the most important technologies for free-floating space robots (FFSRs) to increase operation safety and autonomy in orbit. As a nonholonomic system, a first-order differential relationship exists between the joint angle and the base attitude of the space robot, which makes it pretty challenging to implement the relevant motion planning. Meanwhile, the existing planning framework must solve inverse kinematics for goal configuration and has the limitation that the goal configuration and the initial configuration may not be in the same connected domain. Thus, faced with these questions, this paper investigates a novel motion planning algorithm based on rapidly-exploring random trees (RRTs) for an FFSR from an initial configuration to a goal end-effector (EE) pose. In a motion planning algorithm designed to deal with differential constraints and restrict base attitude disturbance, two control-based local planners are proposed, respectively, for random configuration guiding growth and goal EE pose-guiding growth of the tree. The former can ensure the effective exploration of the configuration space, and the latter can reduce the possibility of occurrence of singularity while ensuring the fast convergence of the algorithm and no violation of the attitude constraints. Compared with the existing works, it does not require the inverse kinematics to be solved while the planning task is completed and the attitude constraint is preserved. The simulation results verify the effectiveness of the algorithm.


2016 ◽  
Vol 23 (4) ◽  
pp. 107-117 ◽  
Author(s):  
J.J.M. Lunenburg ◽  
S.A.M. Coenen ◽  
G.J.L. Naus ◽  
M.J.G. van de Molengraft ◽  
M. Steinbuch

2019 ◽  
Vol 16 (6) ◽  
pp. 172988141988674
Author(s):  
Jonghoek Kim

This article introduces time-efficient path planning algorithms handling both path length and safety within a reasonable computational time. The path is planned considering the robot’s size so that as the robot traverses the constructed path, it doesn’t collide with an obstacle boundary. This article introduces two virtual robots deploying virtual nodes which discretize the obstacle-free space into a topological map. Using the topological map, the planner generates a safe and near-optimal path within a reasonable computational time. It is proved that our planner finds a safe path to the goal in finite time. Using MATLAB simulations, we verify the effectiveness of our path planning algorithms by comparing it with the rapidly-exploring random tree (RRT)-star algorithm in three-dimensional environments.


Author(s):  
Sam Ade Jacobs ◽  
Kasra Manavi ◽  
Juan Burgos ◽  
Jory Denny ◽  
Shawna Thomas ◽  
...  

2013 ◽  
Vol 823 ◽  
pp. 127-130
Author(s):  
Yong Bo Li ◽  
Min Qiang Xu ◽  
Yu Wei

The planning for four-joint legged hopping robot with two redundant degrees of freedom at the take-off stage is researched. According to the take-off velocity and the boundary condition of centroid motion, the trajectory is planned with variable quartic polynomial interpolation. From inverse kinematics, the motion planning with redundancy characteristic is completed by using the GPM with continuous scale factor. Performance index of avoiding joint limit and optimizing joint driving torque are realized. The data indicates the feasibility and practicability of this algorithm.


Sign in / Sign up

Export Citation Format

Share Document