Model-free detection and tracking of dynamic objects with 2D lidar

2015 ◽  
Vol 34 (7) ◽  
pp. 1039-1063 ◽  
Author(s):  
Dominic Zeng Wang ◽  
Ingmar Posner ◽  
Paul Newman
Robotica ◽  
2019 ◽  
Vol 38 (5) ◽  
pp. 761-774 ◽  
Author(s):  
Ángel Llamazares ◽  
Eduardo J. Molinos ◽  
Manuel Ocaña

SummaryWorking with mobile robots, prior to execute the local planning stage, they must know the environment where they are moving. For that reason the perception and mapping stages must be performed previously. This paper presents a survey in the state of the art in detection and tracking of moving obstacles (DATMO). The aim of what follows is to provide an overview of the most remarkable methods at each field specially in indoor environments where dynamic obstacles can be potentially more dangerous and unpredictable. We are going to show related DATMO methods organized in three approaches: model-free, model-based and grid-based. In addition, a comparison between them and conclusions will be presented.


2009 ◽  
Vol 24 (3) ◽  
pp. 157-168 ◽  
Author(s):  
Yegor Malinovskiy ◽  
Jianyang Zheng ◽  
Yinhai Wang

2021 ◽  
Author(s):  
Botao He ◽  
Haojia Li ◽  
Siyuan Wu ◽  
Dong Wang ◽  
Zhiwei Zhang ◽  
...  

Sensors ◽  
2014 ◽  
Vol 14 (2) ◽  
pp. 2911-2943 ◽  
Author(s):  
Gonzalo Rodríguez-Canosa ◽  
Jaime del Cerro Giner ◽  
Antonio Barrientos

Author(s):  
Subharthi Banerjee ◽  
Jose Santos ◽  
Michael Hempel ◽  
Hamid Sharif

In a typical railyard environment, a myriad of large and dynamic objects pose significant risks to railyard workers. Unintentional falls, trips and collisions with dynamic rolling stock due to distractions or lack of situational awareness are an unfortunate reality in modern railyards. The challenges of current technologies in detecting and tracking multiple differently-sized mobile objects in situations such as i) one-on-one, ii) many-to-one, iii) one-to-many, iv) blind spot, and v) interfering/non-interfering separation creates the possibility for reduction or loss of situational awareness in this fast-paced environment. The simultaneous tracking of assets with different size, velocity and material composition in different working and environmental conditions can only be accomplished through joint infrastructure-based asset discovery and localization sensors that cause no interference or impediment to the railyard workers, and which are capable of detecting near-misses as well. Our team is investigating the design and performance of such a solution, and is currently focusing on the innovative usage of lightweight low-cost RADAR under different conditions that are expected to be encountered in railyards across North America. We are employing Ancorteks 580-AD Software Defined RADAR (SDRadar) system, which operates at the license-free frequency of 5.8 GHz and with a variety of different configuration options that make it well-suited for generalized object tracking. The challenges, however, stem from the unique interplay between tracking large metallic objects such as railcars, locomotives, and trucks, as well as smaller objects such as railyard workers, in particular their robust discernment from each other. Our design’s higher-level system can interact with the lower-level SDRadar design to change the parameters in real-time to detect and track large objects over significant distances. The algorithm optimally adjusts waveform, sweep time and sample rate based on one or multiple detected object cross-sections and subsequently alters these parameters to be able to discern other objects from them that are in close proximity. We also use an ensemble method to determine the velocity and distance of target objects to accurately track the subject and larger objects at a distance. The methodology has been field-tested with several test cases in a multitude of weather and lighting conditions. We have also tested the proper height, azimuth and elevation angles for positioning our SDRadar to alleviate the risk of blind spots and enhancing the detection and tracking capabilities of our algorithm. The approach has outperformed our previous tests using visual and acoustic sensors for detection and tracking railroad workers in terms of accuracy and operating flexibility. In this paper, we discuss the details of our proposed approach and present our results from the field tests.


Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 107 ◽  
Author(s):  
Victor Vaquero ◽  
Ely Repiso ◽  
Alberto Sanfeliu

Detecting and tracking moving objects (DATMO) is an essential component for autonomous driving and transportation. In this paper, we present a computationally low-cost and robust DATMO system which uses as input only 2D laser rangefinder (LRF) information. Due to its low requirements both in sensor needs and computation, our DATMO algorithm is meant to be used in current Autonomous Guided Vehicles (AGVs) to improve their reliability for the cargo transportation tasks at port terminals, advancing towards the next generation of fully autonomous transportation vehicles. Our method follows a Detection plus Tracking paradigm. In the detection step we exploit the minimum information of 2D-LRFs by segmenting the elements of the scene in a model-free way and performing a fast object matching to pair segmented elements from two different scans. In this way, we easily recognize dynamic objects and thus reduce consistently by between two and five times the computational burden of the adjacent tracking method. We track the final dynamic objects with an improved Multiple-Hypothesis Tracking (MHT), to which special functions for filtering, confirming, holding, and deleting targets have been included. The full system is evaluated in simulated and real scenarios producing solid results. Specifically, a simulated port environment has been developed to gather realistic data of common autonomous transportation situations such as observing an intersection, joining vehicle platoons, and perceiving overtaking maneuvers. We use different sensor configurations to demonstrate the robustness and adaptability of our approach. We additionally evaluate our system with real data collected in a port terminal the Netherlands. We show that it is able to accomplish the vehicle following task successfully, obtaining a total system recall of more than 98% while running faster than 30 Hz.


Sign in / Sign up

Export Citation Format

Share Document