scholarly journals Manipulating deformable objects by interleaving prediction, planning, and control

2020 ◽  
Vol 39 (8) ◽  
pp. 957-982
Author(s):  
Dale McConachie ◽  
Andrew Dobson ◽  
Mengyao Ruan ◽  
Dmitry Berenson

We present a framework for deformable object manipulation that interleaves planning and control, enabling complex manipulation tasks without relying on high-fidelity modeling or simulation. The key question we address is when should we use planning and when should we use control to achieve the task? Planners are designed to find paths through complex configuration spaces, but for highly underactuated systems, such as deformable objects, achieving a specific configuration is very difficult even with high-fidelity models. Conversely, controllers can be designed to achieve specific configurations, but they can be trapped in undesirable local minima owing to obstacles. Our approach consists of three components: (1) a global motion planner to generate gross motion of the deformable object; (2) a local controller for refinement of the configuration of the deformable object; and (3) a novel deadlock prediction algorithm to determine when to use planning versus control. By separating planning from control we are able to use different representations of the deformable object, reducing overall complexity and enabling efficient computation of motion. We provide a detailed proof of probabilistic completeness for our planner, which is valid despite the fact that our system is underactuated and we do not have a steering function. We then demonstrate that our framework is able to successfully perform several manipulation tasks with rope and cloth in simulation, which cannot be performed using either our controller or planner alone. These experiments suggest that our planner can generate paths efficiently, taking under a second on average to find a feasible path in three out of four scenarios. We also show that our framework is effective on a 16-degree-of-freedom physical robot, where reachability and dual-arm constraints make the planning more difficult.

2021 ◽  
Vol 6 (54) ◽  
pp. eabd8803
Author(s):  
Hang Yin ◽  
Anastasia Varava ◽  
Danica Kragic

Perceiving and handling deformable objects is an integral part of everyday life for humans. Automating tasks such as food handling, garment sorting, or assistive dressing requires open problems of modeling, perceiving, planning, and control to be solved. Recent advances in data-driven approaches, together with classical control and planning, can provide viable solutions to these open challenges. In addition, with the development of better simulation environments, we can generate and study scenarios that allow for benchmarking of various approaches and gain better understanding of what theoretical developments need to be made and how practical systems can be implemented and evaluated to provide flexible, scalable, and robust solutions. To this end, we survey more than 100 relevant studies in this area and use it as the basis to discuss open problems. We adopt a learning perspective to unify the discussion over analytical and data-driven approaches, addressing how to use and integrate model priors and task data in perceiving and manipulating a variety of deformable objects.


Author(s):  
D.L. Roke

The growth in horticultural and some industrial development in selected areas of Northland has led to a need for more specific and careful planning and control of limited resources in a number of major catchments. The potential irrigation demands for horhculture comprise over 60% of Northland's potential water requirements. By contrast, farm water supply needs are only 11% of these needs. Because of their importance to the Northland economy, and in the legislation these needs are given a high priority in water resource management planning. Land uses, including pastoral farming, require careful operation to reduce diffuse sources of pollution.


Soviet Review ◽  
1973 ◽  
Vol 14 (2) ◽  
pp. 24-38 ◽  
Author(s):  
N. Fedorenko ◽  
K. Gofman

Sign in / Sign up

Export Citation Format

Share Document