Peripheral bronchial luminal conspicuity on dynamic-ventilation computed tomography: association with radiation doses and temporal resolution by using an ex vivo porcine lung phantom

2020 ◽  
Vol 61 (12) ◽  
pp. 1608-1617
Author(s):  
Yukihiro Nagatani ◽  
Makoto Yoshigoe ◽  
Shinsuke Tsukagoshi ◽  
Noritoshi Ushio ◽  
Kohei Ohashi ◽  
...  

Background It is still unclear which image reconstruction algorithm is appropriate for peripheral bronchial luminal conspicuity (PBLC) on dynamic-ventilation computed tomography (DVCT). Purpose To assess the influence of radiation doses and temporal resolution (TR) on the association between movement velocity (MV) and PBLC on DVCT. Material and Methods An ex vivo porcine lung phantom with simulated respiratory movement was scanned by 320-row CT at 240 mA and 10 mA. Peak and dip CT density and luminal area adjusted by values at end-inspiration (CTDpeak and CTDdip, luminal area ratio [LAR]) for PBLC and MVs were measured and visual scores (VS) were obtained at 12 measurement points on 13 frame images obtained at half and full reconstructions (TR 340 and 190 ms) during expiration. Size-specific dose estimate (SSDE) was applied to presume radiation dose. VS, CTDpeak, CTDdip, LAR, and their cross-correlation coefficients with MV (CCC) were compared among four methods with combinations of two reconstruction algorithms and two doses. Results The dose at 10 mA was presumed as 26 mA by SSDE for standard proportion adults. VS, CTDdip, CTDpeak, and LAR with half reconstruction at 10 mA (2.52 ± 0.59, 1.016 ± 0.221, 0.948 ± 0.103, and 0.990 ± 0.527) were similar to those at 240 mA except for VS, and different from those with full reconstruction at both doses (2.24 ± 0.85, 0.830 ± 0.209, 0.986 ± 0.065, and 1.012 ± 0.438 at 240 mA) ( P < 0.05). CCC for CTDdip with half reconstruction (–0.024 ± 0.552) at 10 mA was higher compared with full reconstruction (–0.503 ± 0.291) ( P < 0.05). Conclusion PBLC with half reconstruction at 10 mA was comparable to that at 240 mA and better than those with full reconstruction on DVCT.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Robert Peter Reimer ◽  
Konstantin Klein ◽  
Miriam Rinneburger ◽  
David Zopfs ◽  
Simon Lennartz ◽  
...  

AbstractComputed tomography in suspected urolithiasis provides information about the presence, location and size of stones. Particularly stone size is a key parameter in treatment decision; however, data on impact of reformatation and measurement strategies is sparse. This study aimed to investigate the influence of different image reformatations, slice thicknesses and window settings on stone size measurements. Reference stone sizes of 47 kidney stones representative for clinically encountered compositions were measured manually using a digital caliper (Man-M). Afterwards stones were placed in a 3D-printed, semi-anthropomorphic phantom, and scanned using a low dose protocol (CTDIvol 2 mGy). Images were reconstructed using hybrid-iterative and model-based iterative reconstruction algorithms (HIR, MBIR) with different slice thicknesses. Two independent readers measured largest stone diameter on axial (2 mm and 5 mm) and multiplanar reformatations (based upon 0.67 mm reconstructions) using different window settings (soft-tissue and bone). Statistics were conducted using ANOVA ± correction for multiple comparisons. Overall stone size in CT was underestimated compared to Man-M (8.8 ± 2.9 vs. 7.7 ± 2.7 mm, p < 0.05), yet closely correlated (r = 0.70). Reconstruction algorithm and slice thickness did not significantly impact measurements (p > 0.05), while image reformatations and window settings did (p < 0.05). CT measurements using multiplanar reformatation with a bone window setting showed closest agreement with Man-M (8.7 ± 3.1 vs. 8.8 ± 2.9 mm, p < 0.05, r = 0.83). Manual CT-based stone size measurements are most accurate using multiplanar image reformatation with a bone window setting, while measurements on axial planes with different slice thicknesses underestimate true stone size. Therefore, this procedure is recommended when impacting treatment decision.


2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Hsuan-Ming Huang ◽  
Ing-Tsung Hsiao

Background and Objective. Over the past decade, image quality in low-dose computed tomography has been greatly improved by various compressive sensing- (CS-) based reconstruction methods. However, these methods have some disadvantages including high computational cost and slow convergence rate. Many different speed-up techniques for CS-based reconstruction algorithms have been developed. The purpose of this paper is to propose a fast reconstruction framework that combines a CS-based reconstruction algorithm with several speed-up techniques.Methods. First, total difference minimization (TDM) was implemented using the soft-threshold filtering (STF). Second, we combined TDM-STF with the ordered subsets transmission (OSTR) algorithm for accelerating the convergence. To further speed up the convergence of the proposed method, we applied the power factor and the fast iterative shrinkage thresholding algorithm to OSTR and TDM-STF, respectively.Results. Results obtained from simulation and phantom studies showed that many speed-up techniques could be combined to greatly improve the convergence speed of a CS-based reconstruction algorithm. More importantly, the increased computation time (≤10%) was minor as compared to the acceleration provided by the proposed method.Conclusions. In this paper, we have presented a CS-based reconstruction framework that combines several acceleration techniques. Both simulation and phantom studies provide evidence that the proposed method has the potential to satisfy the requirement of fast image reconstruction in practical CT.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Stefan Sawall ◽  
Jan Beckendorf ◽  
Carlo Amato ◽  
Joscha Maier ◽  
Johannes Backs ◽  
...  

Abstract Coronary computed tomography angiography is an established technique in clinical practice and a valuable tool in the diagnosis of coronary artery disease in humans. Imaging of coronaries in preclinical research, i.e. in small animals, is very difficult due to the high demands on spatial and temporal resolution. Mice exhibit heart rates of up to 600 beats per minute motivating the need for highest detector framerates while the coronaries show diameters below 100 μm indicating the requirement for highest spatial resolution. We herein use a custom built micro–CT equipped with dedicated reconstruction algorithms to illustrate that coronary imaging in mice is possible. The scanner provides a spatial and temporal resolution sufficient for imaging of smallest, moving anatomical structures and the dedicated reconstruction algorithms reduced radiation dose to less than 1 Gy but do not yet allow for longitudinal studies. Imaging studies were performed in ten mice administered with a blood-pool contrast agent. Results show that the course of the left coronary artery can be visualized in all mice and all major branches can be identified for the first time using micro-CT. This reduces the gap in cardiac imaging between clinical practice and preclinical research.


2021 ◽  
Author(s):  
Eli Lechtman

Computed tomography (CT) relies on computational algorithms to reconstruct images from CT projections. Current filtered backprojection reconstruction methods have inherent limitations in situations with sharp density gradients and limited beam views. In this thesis two novel reconstruction algorithms were introduced: the Algebraic Image Reconstruction (AIR) algorithm, and the Geometric Image Reconstruction Algorithm (GIRA). A CT simulation was developed to test these novel algorithms and compare their images to filtered backprojection images. AIR and GIRA each demonstrated their proof of principle in these preliminary tests. AIR and its extension, the Parsed AIR algorithm (PAIR), were able to reconstruct optimal images compared to filtered backprojection after empirically determining parameters relevant to the algorithms. While GIRA reconstructed optimal images in preliminary tests, reconstruction was complicated by error propagation for larger imaging domains. The initial success of these novel approaches justifies continued research and development to determine their feasibility for practical CT image reconstruction.


2020 ◽  
Vol 6 (12) ◽  
pp. 135
Author(s):  
Marinus J. Lagerwerf ◽  
Daniël M. Pelt ◽  
Willem Jan Palenstijn ◽  
Kees Joost Batenburg

Circular cone-beam (CCB) Computed Tomography (CT) has become an integral part of industrial quality control, materials science and medical imaging. The need to acquire and process each scan in a short time naturally leads to trade-offs between speed and reconstruction quality, creating a need for fast reconstruction algorithms capable of creating accurate reconstructions from limited data. In this paper, we introduce the Neural Network Feldkamp–Davis–Kress (NN-FDK) algorithm. This algorithm adds a machine learning component to the FDK algorithm to improve its reconstruction accuracy while maintaining its computational efficiency. Moreover, the NN-FDK algorithm is designed such that it has low training data requirements and is fast to train. This ensures that the proposed algorithm can be used to improve image quality in high-throughput CT scanning settings, where FDK is currently used to keep pace with the acquisition speed using readily available computational resources. We compare the NN-FDK algorithm to two standard CT reconstruction algorithms and to two popular deep neural networks trained to remove reconstruction artifacts from the 2D slices of an FDK reconstruction. We show that the NN-FDK reconstruction algorithm is substantially faster in computing a reconstruction than all the tested alternative methods except for the standard FDK algorithm and we show it can compute accurate CCB CT reconstructions in cases of high noise, a low number of projection angles or large cone angles. Moreover, we show that the training time of an NN-FDK network is orders of magnitude lower than the considered deep neural networks, with only a slight reduction in reconstruction accuracy.


2016 ◽  
Vol 67 (3) ◽  
pp. 218-224 ◽  
Author(s):  
Magdalini Smarda ◽  
Efstathios Efstathopoulos ◽  
Argyro Mazioti ◽  
Sofia Kordolaimi ◽  
Agapi Ploussi ◽  
...  

Purpose High radiosensitivity of children undergoing repetitive computed tomography examinations necessitates the use of iterative reconstruction algorithms in order to achieve a significant radiation dose reduction. The goal of this study is to compare the iDose iterative reconstruction algorithm with filtered backprojection in terms of radiation exposure and image quality in 33 chest high-resolution computed tomography examinations performed in young children with chronic bronchitis. Methods Fourteen patients were scanned using the filtered backprojection protocol while 19 patients using the iDose protocol and reduced milliampere-seconds, both on a 64-detector row computed tomography scanner. The iDose group images were reconstructed with different iDose levels (2, 4, and 6). Radiation exposure quantities were estimated, while subjective and objective image qualities were evaluated. Unpaired t tests were used for data statistical analysis. Results The iDose application allowed significant effective dose reduction (about 80%). Subjective image quality evaluation showed satisfactory results even with iDose level 2, whereas it approached excellent image with iDose level 6. Subjective image noise was comparable between the 2 groups with the use of iDose level 4, while objective noise was comparable between filtered backprojection and iterative reconstruction level 6 images. Conclusions The iDose algorithm use in pediatric chest high-resolution computed tomography reduces radiation exposure without compromising image quality. Further evaluation with iterative reconstruction algorithms is needed in order to establish high-resolution computed tomography as the gold standard low-dose method for children suffering from chronic lung diseases.


2021 ◽  
Author(s):  
Eli Lechtman

Computed tomography (CT) relies on computational algorithms to reconstruct images from CT projections. Current filtered backprojection reconstruction methods have inherent limitations in situations with sharp density gradients and limited beam views. In this thesis two novel reconstruction algorithms were introduced: the Algebraic Image Reconstruction (AIR) algorithm, and the Geometric Image Reconstruction Algorithm (GIRA). A CT simulation was developed to test these novel algorithms and compare their images to filtered backprojection images. AIR and GIRA each demonstrated their proof of principle in these preliminary tests. AIR and its extension, the Parsed AIR algorithm (PAIR), were able to reconstruct optimal images compared to filtered backprojection after empirically determining parameters relevant to the algorithms. While GIRA reconstructed optimal images in preliminary tests, reconstruction was complicated by error propagation for larger imaging domains. The initial success of these novel approaches justifies continued research and development to determine their feasibility for practical CT image reconstruction.


Sign in / Sign up

Export Citation Format

Share Document