fdk algorithm
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 4)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jaya Prakash ◽  
Umang Agarwal ◽  
Phaneendra K. Yalavarthy

AbstractDigital rock is an emerging area of rock physics, which involves scanning reservoir rocks using X-ray micro computed tomography (XCT) scanners and using it for various petrophysical computations and evaluations. The acquired micro CT projections are used to reconstruct the X-ray attenuation maps of the rock. The image reconstruction problem can be solved by utilization of analytical (such as Feldkamp–Davis–Kress (FDK) algorithm) or iterative methods. Analytical schemes are typically computationally more efficient and hence preferred for large datasets such as digital rocks. Iterative schemes like maximum likelihood expectation maximization (MLEM) are known to generate accurate image representation over analytical scheme in limited data (and/or noisy) situations, however iterative schemes are computationally expensive. In this work, we have parallelized the forward and inverse operators used in the MLEM algorithm on multiple graphics processing units (multi-GPU) platforms. The multi-GPU implementation involves dividing the rock volumes and detector geometry into smaller modules (along with overlap regions). Each of the module was passed onto different GPU to enable computation of forward and inverse operations. We observed an acceleration of $$\sim 30$$ ∼ 30 times using our multi-GPU approach compared to the multi-core CPU implementation. Further multi-GPU based MLEM obtained superior reconstruction compared to traditional FDK algorithm.


Author(s):  
T. Nouioua ◽  
A. H. Belbachir

Medical imaging has found an important way for routine daily practice using cone-beam computed tomography to reconstruct a 3D volume image using the Feldkamp-Davis-Kress (FDK) algorithm. This way can minimize the patient’s time exposure to X-rays. However, its implementation is very costly in computation time, which constitutes a handicap problem in practice. For this reason, the use of acceleration methods on GPU becomes a real solution. For the acceleration of the FDK algorithm, we have used the GPU on heterogeneous platforms. To take full advantage of the GPU, we have chosen useful features of the GPUs and, we have launched the acceleration of the reconstruction according to some technical criteria, namely the work-groups and the work-items. We have found that the number of parallel cores, as well as the memory bandwidth, have no effect on runtimes speedup without being rough in the choice of the number of work-items, which represents a real challenge to master in order to be able to divide them efficiently into work-groups according to the device specifications considered as principal difficulties if we do not study technically the GPU as a hardware device. After an optimized implementation using kernels launched optimally on GPU, we have deduced that the high capacities of the devices must be chosen with a rough optimization of the work-items which are divided into several work-groups according to the hardware limitations.


2020 ◽  
Vol 6 (12) ◽  
pp. 135
Author(s):  
Marinus J. Lagerwerf ◽  
Daniël M. Pelt ◽  
Willem Jan Palenstijn ◽  
Kees Joost Batenburg

Circular cone-beam (CCB) Computed Tomography (CT) has become an integral part of industrial quality control, materials science and medical imaging. The need to acquire and process each scan in a short time naturally leads to trade-offs between speed and reconstruction quality, creating a need for fast reconstruction algorithms capable of creating accurate reconstructions from limited data. In this paper, we introduce the Neural Network Feldkamp–Davis–Kress (NN-FDK) algorithm. This algorithm adds a machine learning component to the FDK algorithm to improve its reconstruction accuracy while maintaining its computational efficiency. Moreover, the NN-FDK algorithm is designed such that it has low training data requirements and is fast to train. This ensures that the proposed algorithm can be used to improve image quality in high-throughput CT scanning settings, where FDK is currently used to keep pace with the acquisition speed using readily available computational resources. We compare the NN-FDK algorithm to two standard CT reconstruction algorithms and to two popular deep neural networks trained to remove reconstruction artifacts from the 2D slices of an FDK reconstruction. We show that the NN-FDK reconstruction algorithm is substantially faster in computing a reconstruction than all the tested alternative methods except for the standard FDK algorithm and we show it can compute accurate CCB CT reconstructions in cases of high noise, a low number of projection angles or large cone angles. Moreover, we show that the training time of an NN-FDK network is orders of magnitude lower than the considered deep neural networks, with only a slight reduction in reconstruction accuracy.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhiyang Fu ◽  
Hsin Wu Tseng ◽  
Srinivasan Vedantham ◽  
Andrew Karellas ◽  
Ali Bilgin

AbstractTo develop and investigate a deep learning approach that uses sparse-view acquisition in dedicated breast computed tomography for radiation dose reduction, we propose a framework that combines 3D sparse-view cone-beam acquisition with a multi-slice residual dense network (MS-RDN) reconstruction. Projection datasets (300 views, full-scan) from 34 women were reconstructed using the FDK algorithm and served as reference. Sparse-view (100 views, full-scan) projection data were reconstructed using the FDK algorithm. The proposed MS-RDN uses the sparse-view and reference FDK reconstructions as input and label, respectively. Our MS-RDN evaluated with respect to fully sampled FDK reference yields superior performance, quantitatively and visually, compared to conventional compressed sensing methods and state-of-the-art deep learning based methods. The proposed deep learning driven framework can potentially enable low dose breast CT imaging.


2018 ◽  
Vol 31 (10) ◽  
pp. e4697
Author(s):  
Shunli Zhang ◽  
Guohua Geng ◽  
Jian Zhao

Sign in / Sign up

Export Citation Format

Share Document