Theory of Adhesion of Solutions of High-molecular-weight Compounds and its Practical Application. 2. Features of the Adhesion of Concentrated Solutions of Polymers to Fibre and Metal Substrates

2010 ◽  
Vol 37 (8) ◽  
pp. 23-26
Author(s):  
M.Yu. Dolomatov ◽  
M.Yu. Timofeeva
1947 ◽  
Vol 134 (875) ◽  
pp. 181-201 ◽  

Evidence has been presented indicating that the action of concentrated solutions of salts on bacterial respiration may be partly explained in terms of salting-out. It has been suggested that the material upon which this action is exerted is probably one of the proteins concerned in respiration, perhaps a dehydrogenating enzyme. This theory provides satisfactory explanations for: ( a ) the relation between salt con­centration and rate of respiration or dehydrogenase activity; ( b ) the effect of temperature on this relation; and ( c ) the effect of pH on this relation, if it is further supposed that only the zwitterionic fraction of the protein is involved. The relative actions of various salts are in fair agreement with this suggestion, but provide no very convincing evidence either for or against it. The chief point of difficulty lies in the range of concentration over which the action is manifest. With halophilic bacteria, the evidence is consonant with the above view if the protein involved is one of high molecular weight. With normal organisms the salt concentra­tions are much lower than those causing salting-out. There is a little evidence that in normal organisms the dehydrogenating enzymes are less sensitive to salts than the intact cells, which may be the source of the discrepancy. No reason for this can yet be suggested, but the property must be absent from the enzymes of halophilic organisms, and whatever it is, its absence must be the foundation of the halophilic character.


2011 ◽  
Vol 43 (1) ◽  
pp. 104-107 ◽  
Author(s):  
N. I. Kuz’min ◽  
A. V. Makarov ◽  
T. I. Podol’skaya ◽  
E. A. Rogova

2021 ◽  
Vol 266 ◽  
pp. 02012
Author(s):  
A. Grigoryeva ◽  
Rufat S.Abiev

The article discusses the process of high molecular weight flocculant particles dissolving in water during mechanical stirring. A procedure of mixer selection taking into account mixer geometry based on the Prandtl’s semi-empirical turbulence model was developed and described. It was found that the choice of the optimal rotation speed is related with the turbulent frictional stress generated by the impeller of the mixer. The results of experimental studies on the preparation of concentrated solutions of high molecular weight cationic flocculant MagnaflokМ 155 using various impeller types are shown. The efficiency of a conical mixer has been confirmed, which makes it possible prepare a flocculant solution 1.3 times faster due to the possibility of mixing at higher rotational speeds with lower power consumption


Author(s):  
Richard B. Vallee

Microtubules are involved in a number of forms of intracellular motility, including mitosis and bidirectional organelle transport. Purified microtubules from brain and other sources contain tubulin and a diversity of microtubule associated proteins (MAPs). Some of the high molecular weight MAPs - MAP 1A, 1B, 2A, and 2B - are long, fibrous molecules that serve as structural components of the cytamatrix. Three MAPs have recently been identified that show microtubule activated ATPase activity and produce force in association with microtubules. These proteins - kinesin, cytoplasmic dynein, and dynamin - are referred to as cytoplasmic motors. The latter two will be the subject of this talk.Cytoplasmic dynein was first identified as one of the high molecular weight brain MAPs, MAP 1C. It was determined to be structurally equivalent to ciliary and flagellar dynein, and to produce force toward the minus ends of microtubules, opposite to kinesin.


1993 ◽  
Vol 70 (06) ◽  
pp. 0978-0983 ◽  
Author(s):  
Edelmiro Regano ◽  
Virtudes Vila ◽  
Justo Aznar ◽  
Victoria Lacueva ◽  
Vicenta Martinez ◽  
...  

SummaryIn 15 patients with acute myocardial infarction who received 1,500,000 U of streptokinase, the gradual appearance of newly synthesized fibrinogen and the fibrinopeptide release during the first 35 h after SK treatment were evaluated. At 5 h the fibrinogen circulating in plasma was observed as the high molecular weight fraction (HMW-Fg). The concentration of HMW-Fg increased continuously, and at 20 h reached values higher than those obtained from normal plasma. HMW-Fg represented about 95% of the total fibrinogen during the first 35 h. The degree of phosphorylation of patient fibrinogen increased from 30% before treatment to 65% during the first 5 h, and then slowly declined to 50% at 35 h.The early rates of fibrinopeptide A (FPA) and phosphorylated fibrinopeptide A (FPAp) release are higher in patient fibrinogen than in isolated normal HMW-Fg and normal fibrinogen after thrombin addition. The early rate of fibrinopeptide B (FPB) release is the same for the three fibrinogen groups. However, the late rate of FPB release is higher in patient fibrinogen than in normal HMW-Fg and normal fibrinogen. Therefore, the newly synthesized fibrinogen clots faster than fibrinogen in the normal steady state.In two of the 15 patients who had occluded coronary arteries after SK treatment the HMW-Fg and FPAp levels increased as compared with the 13 patients who had patent coronary arteries.These results provide some support for the idea that an increased synthesis of fibrinogen in circulation may result in a procoagulant tendency. If this is so, the HMW-Fg and FPAp content may serve as a risk index for thrombosis.


Sign in / Sign up

Export Citation Format

Share Document