scholarly journals Renewable energy Sector in Gujarat, India

2021 ◽  
Vol 23 (06) ◽  
pp. 1128-1140
Author(s):  
Zahira Tabassum ◽  
◽  
Dr.Chandrashekhar Shastry ◽  

Excessive use of traditional energy sources such as fossil fuels has resulted in significant environmental deterioration. India is one of the world’s fastest-growing energy consumers, and it is making continual efforts to increase renewable energy generation. The use of renewable energy sources to generate electricity is expanding every day. Renewable energy integration with existing power systems is a difficult endeavor that necessitates strategy and development. Climate-friendly energy systems will result from the use of renewable energy sources in power generation, as they lower CO2 emissions caused by fossil fuels used in conventional power generation. This research looks at a renewable energy scenario using Gujarat as a case study, which is a leader in renewable energy generation. The policies taken by the Gujarat government to increase renewable energy’s participation in the energy mix, as well as the challenges and potential solutions for boosting the deployment of renewable energy sources across Gujarat, are discussed. This study can be used as a guide for policymakers and researchers in other states and around the world who want to boost renewable energy share.

Author(s):  
Mahesh Abdare

Abstract: DC Microgrid is going to be a very important part of the Distribution system soon. The given circumstances have forced us to find how to utilize renewable energy sources in the integration to increase its reliability in our day-to-day life. This paper gives a good idea of the DC Microgrid and various methods being used for the controlling part of it. As day by day cost incurred in renewable energy generation is decreasing, we need to find out significant parts where this kind of DC Microgrid can be utilized to provide electricity in all parts of the country. Keywords: DGUs, ImGs, DMA, OXD, DC Microgrid.


2021 ◽  
Author(s):  
özlem karadag albayrak

Abstract Turkey attaches particular importance to energy generation by renewable energy sources in order to remove negative economic, environmental and social effects caused by fossil resources in energy generation. Renewable energy sources are domestic and do not have any negative effect, such as external dependence in energy and greenhouse gas, caused by fossil resources and which constitute a threat for sustainable economic development. In this respect, the prediction of energy amount to be generated by Renewable Energy (RES) is highly important for Turkey. In this study, a generation forecasting was carried out by Artificial Neural Networks (ANN) and Autoregressive Integrated Moving Average (ARIMA) methods by utilising the renewable energy generation data between 1965-2019. While it was predicted by ANN that 127.516 TWh energy would be generated in 2023, this amount was estimated to be 45.457 TeraWatt Hour (TWh) by ARIMA (1.1.6) model. The Mean Absolute Percentage Error (MAPE) was calculated in order to specify the error margin of the forecasting models. This value was determined to be 13.1% by ANN model and 21.9% by ARIMA model. These results suggested that the ANN model provided a more accurate result. It is considered that the conclusions achieved in this study will be useful in energy planning and management.


2019 ◽  
Vol 9 (7) ◽  
pp. 1484 ◽  
Author(s):  
Xiangwu Yan ◽  
Weichao Zhang

Due to the irreversible energy substitution from fossil fuels to clean energy, the development trend of future power systems is based on renewable energy generation. However, due to the incompatibility of converter-based non-dispatchable renewable energy generation, the stability and reliability of traditional power systems deteriorate as more renewables are introduced. Since conventional power systems are dominated by synchronous machines (SM), it is natural to utilize a virtual synchronous generator (VSG) control strategy that intimates SM characteristics on integrated converters. The VSG algorithm developed in this paper originates from mimicking mathematic models of synchronous machines. Among the different models of implementation, the second-order model is simple, stable, and compatible with the control schemes of current converters in traditional power systems. The VSG control strategy is thoroughly researched and case studied for various converter-interfaced systems that include renewable generation, energy storage, electric vehicles (EV), and other energy demands. VSG-based integration converters can provide grid services such as spinning reserves and inertia emulation to the upper grids of centralized plants, distributed generation networks, and microgrids. Thus, the VSG control strategy has paved a feasible way for an evolutionary transition to a power electronics-based future power grid. By referring to the knowledge of traditional grids, a hierarchical system of operations can be established. Finally, generation and loads can be united in universal compatibility architecture under consolidated synchronous mechanisms.


Energies ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 171 ◽  
Author(s):  
Hua Zhou ◽  
Huahua Wu ◽  
Chengjin Ye ◽  
Shijie Xiao ◽  
Jun Zhang ◽  
...  

With the rapid growth of renewable energy generation, it has become essential to give a comprehensive evaluation of renewable energy integration capability in power systems to reduce renewable generation curtailment. Existing research has not considered the correlations between wind power and photovoltaic (PV) power. In this paper, temporal and spatial correlations among different renewable generations are utilized to evaluate the integration capability of power systems based on the copula model. Firstly, the temporal and spatial correlation between wind and PV power generation is analyzed. Secondly, the temporal and spatial distribution model of both wind and PV power generation output is formulated based on the copula model. Thirdly, aggregated generation output scenarios of wind and PV power are generated. Fourthly, wind and PV power scenarios are utilized in an optimal power flow calculation model of power systems. Lastly, the integration capacity of wind power and PV power is shown to be able to be evaluated by satisfying the reliability of power system operation. Simulation results of a modified IEEE RTS-24 bus system indicate that the integration capability of renewable energy generation in power systems can be comprehensively evaluated based on the temporal and spatial correlations of renewable energy generation.


For the enormously increased power demand in the modern world, the existing fossil fuel sources seem to be inadequate to meet the demands. Hence, it is necessary to switch over to use Renewable Energy Sources (RES). Besides the demand concerns, the power generation from fossil fuels causes environmental pollution prominently. As a result, the utilization of RES has been encouraged. When RES is interconnected with the grid, this system becomes an excellent solution to fulfill the power demand of the present scenario. The energy generated from renewable energy sources varies according to seasonal variations. The power generated from RES can be delivered to the load by interconnecting it with the grid. When a small size RES system is connected with the distribution network, it can deliver energy to the isolated zones where the energy cannot be drawn from the conventional network. In this work, the Artificial Neural Network based Maximum Power Point Tracking scheme has been introduced with Photovoltaic (PV) power generation. Also, a bi-directional charger is introduced to overcome the battery issues. The model is evaluated in the MATLAB/SIMULINK package. The performance of the system is analyzed by applying different voltage levels to qZSI. The voltage gain, effectiveness of the scheme, MPPT and the regulation of the voltages are observed


2019 ◽  
pp. 0309524X1987403 ◽  
Author(s):  
Aleksey A Zhidkov ◽  
Andrey A Achitaev ◽  
Mikhail V Kashurnikov

The urgency of developing renewable power generation in Russia is associated with the presence of a large number of regions with a low degree of electrification. More than two-thirds of the territory of Russia is located in the area of decentralized power supply, where the main source of energy is imported diesel fuel or associated gas from local fields. At present, one of the directions for the development of renewable power generation in Russia is the implementation of a hybrid power supply system for autonomous power systems of remote regions. However, along with the possibility of using renewable energy sources, it is important for such regions to generate heat from co-generation of diesel power plants, since there is an urgent problem of heat supply for remote regions, especially located in the Far North of Russia. This article presents an analysis of the influence of using renewable energy sources in autonomous power systems on co-generation of diesel power plants.


Author(s):  
Kumar Gaurav

A major share of world’s primary energy requirement is dependent on fossil fuels which is not only a non renewable source of energy and on the verge of extinction but also associated with serious environmental concerns. To combat these issues, alternative renewable energy sources are required. Certain examples of renewable energy sources are solar energy, wind energy, hydro and thermal energy, biofuels etc. Biomass is one such alternative which is freely and abundantly available. It is mainly the agricultural waste and vegetable waste which are perishable and create a lot of nuisance. Tapping this biomass for energy production will be beneficial in two ways; it will be an excellent source of energy generation and it will also help in waste management for environment protection. Energy generation from Biomass can take place either chemically or thermo-chemically. In the present paper advantages of anaerobic digestion of biomass are discussed for biogas production.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7803
Author(s):  
Michael E. Stamatakis ◽  
Maria G. Ioannides

In terms of energy generation and consumption, ships are autonomous and isolated power systems with energy requirements related to the type and kind of power demands and according to ship types: passenger ships, or commercial ships. Power supply on ships is traditionally based on engines thermal generators, which use fossil fuels, diesel, or natural gas. Due to the continuous operation of thermal generators in ships, this ends up increasing polluting gas emissions for the environment, mainly CO2. A combination of Renewable Energy Sources (RES) with traditional ship thermal engines can reduce CO2 emissions, resulting in a ‘greener’ interaction between ships and the environment. Due to the varying power needs for ship operation, considering the varying nature of load demands during long distance travels and during harbor entry, the use of RES must be evaluated. This paper presents a new control method to balance LNG ship load demands and power generation from RES, based on an accurate model and solution in real conditions. The Energy Management System (EMS) is designed and implemented in a Finite State Machine structure using the logical design of state transitions. The results prove that the reduction of consumption of fossil fuels is feasible, and, if this is combined with RES, it reduces CO2 emissions.


2019 ◽  
Vol 6 (3-4) ◽  
pp. 77-87
Author(s):  
VALENTYNA YAKUBIV ◽  
YULIIA MAKSYMIV ◽  
IRYNA HRYHORUK ◽  
NAZARIY POPADYNETS ◽  
IRYNA PIATNYCHUK

The paper deals with global trends in energy consumption and renewable energy generation. Worldwide practices in financing of renewable energy production are analysed according to the following dimensions: sources of financing, types of used policy instruments, types of recipients (public or private) and types of financed technologies. The key factors that influence the investment attractiveness of renewable energy sources in the world are presented. Main obstacles impeding the utilisation of potential of renewable energy generation in Ukraine are pointed out from the standpoint of the global development trends, as the experience of economically developed countries are advised to be used for Ukraine. Conditions for investment activity in this field should be created (involving both domestic and foreign investments), stimulating state policy should be implemented, and an energy management based on the international experience should be developed. The problems of renewable energy sources in Ukraine are described, in particular, the presence of investment risk in terms of its components as general economic, legal and financial. In the most developed countries in terms of RES consumption direct public investment is a small proportion of total renewable energy financing, whereas private investment has the major share. A significant obstacle to the possibility of realizing such experience in Ukraine is the presence of investment risk, mainly caused by unstable political conditions (both internal and external). Energy management and monitoring activities of enterprises of various forms of ownership and branch affiliation should be introduced along with the necessity of attracting investments in renewable energy. It is expected that the results presented in this article may be useful for improving the renewable energy development policy both at the country level and at the level of a particular economic entity.


2021 ◽  
Vol 16 (1) ◽  
pp. 67-78
Author(s):  
Temitope M. Adeyemi-Kayode ◽  
◽  
Sanjay Misra ◽  
Robertas Damaševičius ◽  
◽  
...  

The limited supply of fossil fuels, constant rise in the demand of energy and the importance of reducing greenhouse emissions has brought about the adoption of renewable energy sources for generation of electrical power. In this paper, the impact of renewable energy generation in Nigeria is explored. A review of renewable deposits in Nigeria with a focus on Solar, Biomass, Hydropower, Pumped Storage Hydro and Ocean energy is detailed. The impact of renewable energy-based generation is assessed from three different dimensions: Economic Impact, Social Impact and Environmental Impact. In accessing economic impact; the conditions are employment and job creation, gross domestic product (GDP) growth and increase in local research and development. To analyze the social impact; renewable energy education, renewable energy businesses, ministries and institutes, renewable energy projects and investments as well as specific solar and wind projects across Nigeria were considered. Also, environmental issues were discussed. Similarly, policy imperatives for renewable energy generation in Nigeria was provided. This paper would be useful in accessing the successes Nigeria has experienced so far in the area of sustainable development and the next steps to achieving universal energy for all in Nigeria in 2030.


Sign in / Sign up

Export Citation Format

Share Document