Predicting forming limit diagrams for AZ31 magnesium alloy and 7050 aluminum alloy by numerical simulation

Author(s):  
Fengmei Xue ◽  
Yu Yan ◽  
Jincheng Kang

Forming limit diagram (FLD) is the most intuitive method to evaluate and analyze the forming performance of sheet metal, which is widely used in production. To examine the formability of AZ31 magnesium alloy and 7050 aluminum alloy, the simplified bulging models based on the Nakazima experiment are established by ABAQUS finite element (FE) software, and the maximum punch force criterion is adopted as the instability criterion. The forming limit diagrams of 7050 high-strength aluminum alloy at room temperature and AZ31 magnesium alloy at warm working conditions are obtained by extracting the in-plane strain of the adjacent element of the maximum strain element at the moment of instability. Compared with experimental observation shows that the Nakazima virtual model established in this paper can accurately predict FLD. In addition, the influences of lubrication conditions and virtual punching speeds on the bulging process of AZ31 and AA7050 sheet metals are also investigated. The results show that the better the lubrication environment, or the lower the punching speed, the better the formability of the sheet, and reducing the punching speed has a more significant improvement effect on the formability of AZ31 sheets.

2009 ◽  
Vol 2009.47 (0) ◽  
pp. 337-338
Author(s):  
Yosuke UEKAWA ◽  
Takashi KATAHIRA ◽  
Akiyoshi ODE ◽  
Testuo NAKA ◽  
Takeshi UEMORI ◽  
...  

2007 ◽  
Vol 344 ◽  
pp. 31-38 ◽  
Author(s):  
Archimede Forcellese ◽  
Mohamad El Mehtedi ◽  
M. Simoncini ◽  
S. Spigarelli

The formability of AZ31 magnesium alloy sheets has been investigated in the temperature range varying from 200 to 300°C. Forming limit diagrams have been obtained by performing Nakazima-based tests. The different straining conditions have been investigated using sheet blanks with several length to width ratios. The forming limit curves have been related to the microstructural evolution occurring during deformation. The forming limit diagrams have shown a remarkable increase in formability with temperature that could be related to the occurrence of full dynamic recrystallization at 300°C.


2021 ◽  
Author(s):  
Tiejun Gao ◽  
Jiabin Zhang ◽  
Kaixuan Wang

Abstract Hemispherical aluminum alloy parts are extensively used in modern aerospace and other manufacturing fields. However, wrinkling and cracking easily occur due to the large deformation of the parts, which leads to a complicated forming process. This research proposes a viscous backpressure forming method for hemispherical aluminum alloy parts. The forming limit diagram of LF2 sheet is established through the forming limit experiments. By the combination of finite element analysis and experimental verification, the forming process of the parts under different viscous backpressure and loading path conditions as well as the distribution law of stress-strain and wall thickness of the parts, are obtained. By comparing with the forming limit diagrams, technical feasibility of this forming process is discussed. The research results show that qualified parts can be formed using the viscous backpressure forming method under the conditions of viscous backpressure loading throughout the process with the backpressure at or above 12MPa. This provides a reference for the backpressure forming of hemispherical aluminum alloy parts.


2011 ◽  
Vol 308-310 ◽  
pp. 2442-2445 ◽  
Author(s):  
Hong Wei Liu ◽  
Sheng Jie Yao ◽  
Wen Liang Liu ◽  
Zhao Duo Zhang

The forming limit diagram of magnesium alloy ZK60 was developed with Hill’s instability criterion and M-K analysis. The relationship of forming limit with stain path, temperature and the thickness irregular coefficient were analyzed. The results show that the forming limit of ZK60 magnesium alloy increased little with the rising of strain ratio, but influenced greatly by the failure definition , and forming limit of is increased with the rising of temperature and thickness irregular coefficient, the most suitable value of f0 is 0.99, the fracture occur on the grain boundaries with significant cavities formation.


2010 ◽  
Vol 152-153 ◽  
pp. 541-544
Author(s):  
Hong Wei Liu ◽  
Peng Zhang

The forming limit diagram of clad was developed with Hill’s instability criterion and M–K analysis at the positive strain ratio. The relationships of forming limit with stain path, thickness ratio and thickness irregular coefficient were analyzed. The results show that the forming limit of clad material is between those of its component materials, and increase with the rising of stainless steel thickness ratio and the thickness irregular coefficient. The most suitable value of f0 is 0.094 and the stainless steel aluminum clad break with local interfacial cracks.


2008 ◽  
Vol 604-605 ◽  
pp. 147-152 ◽  
Author(s):  
P. Ricci ◽  
Mohamad El Mehtedi ◽  
L. Barone ◽  
S. Spigarelli

The formability of AZ31 magnesium alloy sheets, with two different thicknesses, has been investigated at room temperature and 250°C by means of Nakazima tests. The different straining conditions have been studied by using sheet blanks with several length to width ratios, and Forming Limit Diagrams were then obtained with and without using lubricant. As expected, an increase in temperature was observed to enhance the formality of the alloy. The formability increases also by increasing the thickness as well as by using Teflon foil as lubricant. The microstructure of the deformed samples was analysed by means of light optical microscope.


2012 ◽  
Vol 509 ◽  
pp. 253-258 ◽  
Author(s):  
Fei Feng ◽  
Zheng Hua Meng ◽  
Shang Yu Huang ◽  
Jian Hua Hu ◽  
Zhi Lei He

Forming Limit Diagram of AZ31 magnesium alloy in different forming methods was researched in this paper. Experiment equipment and processes were improved successfully. Some tests and experiments (including tensile test, punch test and electromagnetic forming experiment) of AZ31 magnesium alloy sheet were done. Forming Limit Diagram of electromagnetic forming was established successfully. It could promote the application of magnesium alloy sheet in electromagnetic forming. Forming Limit Diagram of static forming was established successfully. It was very useful for the application of magnesium alloy sheet in other forming methods. The difference between these Forming Limit Diagram showed that electromagnetic forming obviously improve forming ability of the magnesium alloy sheet.


Sign in / Sign up

Export Citation Format

Share Document