scholarly journals Change of rocker function in the gait of stroke patients using an ankle foot orthosis with an oil damper: immediate changes and the short-term effects

2011 ◽  
Vol 35 (4) ◽  
pp. 350-359 ◽  
Author(s):  
Sumiko Yamamoto ◽  
Masako Fuchi ◽  
Tadashi Yasui

Background: An ankle foot orthosis (AFO) using an oil damper (AFO-OD) to assist the first rocker during gait was previously developed but the effect on the other rocker functions has not been clarified. Objectives: The immediate and short-term effects on the gait of stroke patients with the AFO-OD were investigated from the viewpoint of the rocker function. Study Design: Crossover study. Methods: The gait of eight stroke patients in chronic phase without an AFO, with the AFO-OD, and the gait with AFO-OD after three weeks of continuous use and gait training were measured by 3D motion analysis. Results: Immediate changes observed on use of the AFO-OD were improvements in walking speed, the spatiotemporal parameters, and the angular change of dorsiflexion of the ankle joint. Three weeks of continuous AFO-OD use and gait training showed further improvements in walking speed and the spatiotemporal parameters as well as an increase in dorsiflexion angle and plantar flexor moment of the ankle joint of the paretic limb in stance. Conclusions: These changes produced improvement of the second rocker function, but improvement of the third rocker was insufficient. Results show the importance of gait training to take full advantage of an AFO.

2014 ◽  
Vol 39 (2) ◽  
pp. 140-149 ◽  
Author(s):  
Sumiko Yamamoto ◽  
Setsuro Ibayashi ◽  
Masako Fuchi ◽  
Tadashi Yasui

Background:An ankle–foot orthosis using an oil damper is designed to enable natural movement of the ankle joint. Wearing an ankle–foot orthosis using an oil damper has been demonstrated to assist the first rocker in stroke patients, but its effect on their gait when not wearing it is unclear.Objectives:To determine the effect of use of ankle–foot orthosis using an oil damper on the gait of stroke patients with hemiparesis when not wearing the ankle–foot orthosis.Study design:Crossover study.Methods:The gait of eight stroke patients in the chronic phase when not wearing an ankle–foot orthosis was measured, using a three-dimensional motion analysis system, before using the ankle–foot orthosis using an oil damper and then without and with using the ankle–foot orthosis using an oil damper after 3 weeks of use. Differences in gait were compared between the three measurement conditions.Results:Use of ankle–foot orthosis using an oil damper significantly decreased preswing time and significantly increased the positive ankle joint power in stance when not wearing the ankle–foot orthosis using an oil damper.Conclusions:These changes indicate the promising therapeutic effects of ankle–foot orthosis using an oil damper use and suggest the ankle–foot orthosis using an oil damper’s potential as a therapeutic device.Clinical relevanceAfter 3 weeks of use of an ankle–foot orthosis using an oil damper, which assists the first rocker, the gait of stroke patients in the chronic phase when not wearing the ankle–foot orthosis using an oil damper was improved. Preswing time was significantly decreased and positive ankle joint power was significantly increased. The ankle–foot orthosis using an oil damper, which assists the first rocker function with natural movement of the ankle joint during gait, has the potential to improve the gait of stroke patients after immediate-term use.


2007 ◽  
Vol 31 (1) ◽  
pp. 76-87 ◽  
Author(s):  
Stefania Fatone ◽  
Andrew H. Hansen

Accurate alignment of anatomical and mechanical joint axes is one of the major biomechanical principles pertaining to articulated orthoses, yet knowledge of the potential effects of axis misalignment is limited. The purpose of this project was to model the effects of systematic linear (proximal-distal and anterior-posterior) misalignments of single axis mechanical ankle joints in an ankle-foot orthosis (AFO) in order to determine the degree and direction of calf band travel that would occur over a functional range of motion. Sagittal plane misalignments of the ankle joint centres of an AFO were simulated using a simple two-dimensional model for both a range of ankle angles and a typical able-bodied ankle kinematic curve for self-selected normal walking speed. The model assumed that no movement occurred between the foot and the foot-plate of the AFO. The model predicted that for anterior (positive horizontal) misalignments, dorsiflexion movements would cause the calf band to travel proximally (i.e., up the leg) and plantar flexion movements would cause the calf band to travel distally (i.e., down the leg). The opposite was predicted for posterior (negative horizontal) misalignments. Proximal (positive vertical) misalignments would cause only distal movements of the calf band while distal (negative vertical) misalignments would cause only proximal movements of the calf band. Anterior-posterior misalignments were found to have a much larger effect on the amount of calf band travel than proximal-distal misalignments.


2016 ◽  
Vol 28 (5) ◽  
pp. 654-663 ◽  
Author(s):  
Kenta Nomura ◽  
◽  
Teru Yonezawa ◽  
Hiroshi Takemura ◽  
Hiroshi Mizoguchi

[abstFig src='/00280005/06.jpg' width='300' text='Developed device' ] According to a worldwide WHO survey, about one-third of people at the age of 65 or older experience at least one fall a year, which may result in a severe injury. Meanwhile, the population of the developed world is increasingly aging, and fall incidents can be therefore considered as a global problem. The causes of falls include the weakening of the tibialis anterior and gastrocnemius muscles that respectively play important roles in the dorsal and plantar flexion of the foot, and deterioration of the functions necessary to recover balance from perturbations during gait. Such dysfunctions are treated with rehabilitation provided by physical therapists and with special gait training in which the patient is subjected to perturbations. Although devices for rehabilitation and gait training have been developed, they are problematic since they only allow the ankle joint to move at a low number of degrees of freedom (DOF). In this study, we developed an ankle foot orthosis to provide six-DOF control of the ankle joint using a parallel link mechanism known as a Stewart platform. The Stewart platform construction makes it possible to provide six-DOF control. Since the ankle foot orthosis can be applied to walking, it can assist walking or gait training. In one of our prior studies, we proposed a force control method for the device, and verified its accuracy. In the present study, we improved the attachment method and introduced a pressure sensor to the previous version of the device to allow implementation of a new method that enables control adapted to the human gait. In addition, we conducted four experiments to verify whether it is possible to reproduce the physical therapist’s rehabilitation manipulations without limiting the ankle joint’s DOF, provide arbitrary walking assist action, and impart perturbations to the subject during gait. The first experiment verified the device’s accuracy in reproducing motion, the second confirmed the dispersion of the reproduced motion, the third assessed the walking-assist performance to prevent trips, and the fourth ascertained whether it is possible to make the subject lose balance by the imparted perturbation. The results demonstrated that the motions can be reproduced with high accuracy and with low dispersion and that the ankle joint motions can be controlled adaptively to fit the subject’s gait, suggesting the usefulness of the proposed device.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoo Jin Choo ◽  
Min Cheol Chang

AbstractWe conducted a meta-analysis to investigate the effectiveness of ankle–foot orthosis (AFO) use in improving gait biomechanical parameters such as walking speed, mobility, and kinematics in patients with stroke with gait disturbance. We searched the MEDLINE (Medical Literature Analysis and Retrieval System Online), CINAHL (Cumulative Index to Nursing and Allied Health Literature), Cochrane, Embase, and Scopus databases and retrieved studies published until June 2021. Experimental and prospective studies were included that evaluated biomechanics or kinematic parameters with or without AFO in patients with stroke. We analyzed gait biomechanical parameters, including walking speed, mobility, balance, and kinematic variables, in studies involving patients with and without AFO use. The criteria of the Cochrane Handbook for Systematic Reviews of Interventions were used to evaluate the methodological quality of the studies, and the level of evidence was evaluated using the Research Pyramid model. Funnel plot analysis and Egger’s test were performed to confirm publication bias. A total of 19 studies including 434 participants that reported on the immediate or short-term effectiveness of AFO use were included in the analysis. Significant improvements in walking speed (standardized mean difference [SMD], 0.50; 95% CI 0.34–0.66; P < 0.00001; I2, 0%), cadence (SMD, 0.42; 95% CI 0.22–0.62; P < 0.0001; I2, 0%), step length (SMD, 0.41; 95% CI 0.18–0.63; P = 0.0003; I2, 2%), stride length (SMD, 0.43; 95% CI 0.15–0.71; P = 0.003; I2, 7%), Timed up-and-go test (SMD, − 0.30; 95% CI − 0.54 to − 0.07; P = 0.01; I2, 0%), functional ambulation category (FAC) score (SMD, 1.61; 95% CI 1.19–2.02; P < 0.00001; I2, 0%), ankle sagittal plane angle at initial contact (SMD, 0.66; 95% CI 0.34–0.98; P < 0.0001; I2, 0%), and knee sagittal plane angle at toe-off (SMD, 0.39; 95% CI 0.04–0.73; P = 0.03; I2, 46%) were observed when the patients wore AFOs. Stride time, body sway, and hip sagittal plane angle at toe-off were not significantly improved (p = 0.74, p = 0.07, p = 0.07, respectively). Among these results, the FAC score showed the most significant improvement, and stride time showed the lowest improvement. AFO improves walking speed, cadence, step length, and stride length, particularly in patients with stroke. AFO is considered beneficial in enhancing gait stability and ambulatory ability.


2020 ◽  
Vol 81 ◽  
pp. 27-32 ◽  
Author(s):  
Yusuke Sekiguchi ◽  
Dai Owaki ◽  
Keita Honda ◽  
Kenichiro Fukushi ◽  
Noriyoshi Hiroi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document