Two novel SCN1A mutations identified in families with familial hemiplegic migraine

Cephalalgia ◽  
2014 ◽  
Vol 34 (13) ◽  
pp. 1062-1069 ◽  
Author(s):  
Claudia M Weller ◽  
Nadine Pelzer ◽  
Boukje de Vries ◽  
Mercè Artigas López ◽  
Oriol De Fàbregues ◽  
...  

Background Familial hemiplegic migraine (FHM) is a rare monogenic subtype of migraine with aura, characterized by motor auras. The majority of FHM families have mutations in the CACNA1A and ATP1A2 genes; less than 5% of FHM families are explained by mutations in the SCN1A gene. Here we screened two Spanish FHM families for mutations in the FHM genes. Methods We assessed the clinical features of both FHM families and performed direct sequencing of all coding exons (and adjacent sequences) of the CACNA1A, ATP1A2, PRRT2 and SCN1A genes. Results FHM patients in both families had pure hemiplegic migraine with highly variable severity and frequency of attacks. We identified a novel SCN1A missense mutation p.Ile1498Met in all three tested hemiplegic migraine patients of one family. In the other family, novel SCN1A missense mutation p.Phe1661Leu was identified in six out of eight tested hemiplegic migraine patients. Both mutations affect amino acid residues that either reside in an important functional domain (in the case of Ile1498) or are known to be important for kinetic properties of the NaV1.1 channel (in the case of Phe1661). Conclusions We identified two mutations in families with FHM. SCN1A mutations are an infrequent but important cause of FHM. Genetic testing is indicated in families when no mutations are found in other FHM genes.

2020 ◽  
Vol 10 (6) ◽  
pp. 372
Author(s):  
Giangennaro Coppola ◽  
Grazia Maria Giovanna Pastorino ◽  
Luigi Vetri ◽  
Floriana D’Onofrio ◽  
Francesca Felicia Operto

An Italian family with familial hemiplegic migraine (FHM) with the absence of mutations in the known genes associated with this disorder, namely ATP1A2, ATP1A3, CACNA1A, and SCN1A, has recently been reported. Soon afterward, whole exome sequencing allowed the identification of the carrier status of a heterozygous ATP1A4 mutation c.1798 C >T, in four affected members of this family. Here we compare the clinical symptoms of the affected family members with those from the other FHM families linked to mutations in the known genes associated with this disorder. A further two-year follow-up, including clinical response to carbamazepine administered to the proband and the maternal grandmother due to a worsening of the migraine symptoms, is reported. The clinical condition of the proband’s brother, carrying the same mutation and suffering from congenital ventricular and supraventricular extrasystoles, isdiscussed as well.


Cephalalgia ◽  
2019 ◽  
Vol 39 (11) ◽  
pp. 1382-1395
Author(s):  
Wenjing Tang ◽  
Meichen Zhang ◽  
Enchao Qiu ◽  
Shanshan Kong ◽  
Yingji Li ◽  
...  

Background ATP1A2 has been identified as the genetic cause of familial hemiplegic migraine type 2. Over 80 ATP1A2 mutations have been reported, but no data from Chinese family studies has been included. Here, we report the first familial hemiplegic migraine type 2 Chinese family with a novel missense mutation. Methods Clinical manifestations in the family were recorded. Blood samples from patients and the unaffected members were collected for whole-exome sequencing to identify the pathogenic mutation. Seven online softwares (SIFT, PolyPhen-2, PROVEAN, PANTHER, MutationTaster2, MutationAssessor and PMut) were used for predicting the pathogenic potential of the mutation. PredictProtein, Jpred 4 and PyMOL were used to analyze structural changes of the protein. The mutation function was further tested by Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. Results All patients in the family had typical hemiplegic migraine attacks. Co-segregation of the mutation with the migraine phenotype in four generations, with 10 patients, was completed. The identified novel mutation, G762S in ATP1A2, exhibited the disease-causing feature by all the predictive softwares. The mutation impaired the local structure of the protein and decreased cell viability. Conclusion G762S in ATP1A2 is a novel pathogenic mutation identified in a Chinese family with familial hemiplegic migraine, which causes loss of function by changing the protein structure of the Na+/K+-ATPase α2 subunit.


2004 ◽  
Vol 279 (42) ◽  
pp. 43692-43696 ◽  
Author(s):  
Laura Segall ◽  
Rosemarie Scanzano ◽  
Mari A. Kaunisto ◽  
Maija Wessman ◽  
Aarno Palotie ◽  
...  

Cephalalgia ◽  
2016 ◽  
Vol 37 (13) ◽  
pp. 1294-1298 ◽  
Author(s):  
Yang Zhang ◽  
Ning Chen ◽  
Muke Zhou ◽  
Jian Guo ◽  
Jiang Guo ◽  
...  

Background Familial hemiplegic migraine (FHM) is a rare type of migraine with aura that is characterized by transient hemiparesis. Mutations in three genes (CACNA1A, ATP1A2, and SCN1A) have been found to cause FHM. Among these, nine SCN1A gene mutations were reported to cause familial hemiplegic migraine type 3 (FHM3). However, none of them was reported in China. Method The clinical manifestations of a Chinese FHM family were recorded and all coding exons and flanking intronic regions of the CACNA1A, ATP1A2, and SCN1A genes were tested for mutations. Results All FHM patients in the investigated family have typical hemiplegic migraine attacks characteristic of FHM. We identified a novel mutation (p.Leu1670Trp) of the SCN1A gene. The affected amino acid is highly conserved across different species and therefore likely plays an important role in SCN1A gene function. Conclusion The identification of a novel mutation in the SCN1A gene in the Chinese population may further aid in the understanding of FHM genetics.


Cephalalgia ◽  
2013 ◽  
Vol 34 (3) ◽  
pp. 183-190 ◽  
Author(s):  
Christian Roth ◽  
Tobias Freilinger ◽  
Georgi Kirovski ◽  
Juliane Dunkel ◽  
Yogesh Shah ◽  
...  

Introduction Familial hemiplegic migraine (FHM) is a rare subtype of migraine with transient hemiplegic aura. Patients and methods We describe three unrelated families with familial hemiplegic migraine type II (FHM2). Retrospectively, information on 47 family members could be obtained, 15 by personal examination and 32 by indirect anamnesis from relatives. Genetic analyses were performed in 13 patients. Results One family had a novel missense mutation in the ATP1A2 gene (c.659C>T, p.Ser220Leu) that segregated with the phenotype in three generations. Two further unrelated families with different ethnic backgrounds (one from Germany and one from Russia) had a missense mutation that has not been described as yet in FHM, but occurred in only a single patient with sporadic hemiplegic migraine (c.2723G>A, p.Arg908Gln). Clinically the patients had severe attacks lasting up to several weeks as well as epileptic seizures. Three patients with a proven mutation in the ATP1A2 gene clinically presented without hemiparesis. Furthermore, there was a possible relation of FHM2 to mental retardation in another two patients. Conclusion Clinical symptoms may last for several weeks in some patients. Patients with FHM2 may also present without hemiplegia. Therefore, the full family history has to be taken into account to establish the diagnosis of FHM.


Cephalalgia ◽  
2009 ◽  
Vol 29 (3) ◽  
pp. 308-313 ◽  
Author(s):  
M-J Castro ◽  
AH Stam ◽  
C Lemos ◽  
B de Vries ◽  
KRJ Vanmolkot ◽  
...  

Almost all mutations in the SCN1A gene, encoding the α1 subunit of neuronal voltage-gated Nav1.1 sodium channels, are associated with severe childhood epilepsy. Recently, two mutations were identified in patients with pure familial hemiplegic migraine (FHM). Here, we identified a novel SCN1A L263V mutation in a Portuguese family with partly co-segregating hemiplegic migraine and epilepsy. The L263V mutation segregated in five FHM patients, three of whom also had epileptic attacks, occurring independently from their hemiplegic migraine attacks. L263V is the first SCN1A mutation associated with FHM and co-occurring epilepsy in multiple mutation carriers, and is the clearest molecular link between migraine and epilepsy thus far. The results extend the clinical spectrum associated with SCN1A mutations and further strengthen the molecular evidence that FHM and epilepsy share, at least in part, similar molecular pathways.


Sign in / Sign up

Export Citation Format

Share Document