Performance Analysis of Piezoelectric Energy Harvesting in Pavement: Laboratory Testing and Field Simulation

Author(s):  
Abbas F. Jasim ◽  
Hao Wang ◽  
Greg Yesner ◽  
Ahmad Safari ◽  
Pat Szary

This study investigated the energy harvesting performance of a piezoelectric module in asphalt pavements through laboratory testing and multi-physics based simulation. The energy harvester module was assembled with layers of Bridge transducers and tested in the laboratory. A decoupled approach was used to study the interaction between the energy harvester and the surrounding pavement. The effects of embedment location, vehicle speed, and temperature on energy harvesting performance were investigated. The analysis findings indicate that the embedment location and vehicle speed affects the resulted power output of the piezoelectric energy harvesting system. The embedment depth of the energy module affects both the magnitude and frequency of stress pulse on top of the energy module induced by tire loading. On the other hand, higher vehicle speed causes greater loading frequency and thus greater power output; the effect of pavement temperature is negligible. The analysis of total power output before reaching fatigue failure of the energy module can be used to determine the optimum embedment location in the asphalt layer. The proposed energy harvesting system provides great potential to generate green energy from waste kinetic energy in roadway pavements. Field study is recommended to verify these findings with long-term performance monitoring of pavement with embedded energy harvesters.

2018 ◽  
Vol 5 (3-4) ◽  
pp. 53-65 ◽  
Author(s):  
Dinesh R. Palikhel ◽  
Tyrus A. McCarty ◽  
Jagdish P. Sharma

Abstract Vibrational energy from intermodal transport system can be recovered through the application of piezoelectric energy harvesting system. The intermodal vibration sources are passenger cars and freight trucks moving on streets and highways, trains moving on railway tracks and planes moving on airport runways. However, the primary limiting factor of the application of the piezoelectric energy harvesting system has been the insignificant power output for power storage or to directly power electrical device. A special nano-mixture coating is developed to enhance the energy harvesting capability of the conventional piezoelectric material. This research investigates the impact of the nano-mixture coating on the power output. The experimental results of the nano-mixture coated system show substantial and explicit improvement on the power output. Alternative geometrical designs, trapezoidal and triangular are explored in anticipation for improved power output. But the rectangular energy harvester demonstrates better power harvesting capability. The results presented in this paper show the potential of the nano-mixture coating in power harvesting from intermodal transport system.


2014 ◽  
Vol 953-954 ◽  
pp. 655-658 ◽  
Author(s):  
Guang Qing Shang ◽  
Hong Bing Wang ◽  
Chun Hua Sun

Energy harvesting system has become one of important areas of ​​research and develops rapidly. How to improve the performance of the piezoelectric vibration energy harvester is a key issue in engineering applications. There are many literature on piezoelectric energy harvesting. The paper places focus on summarizing these literature of mathematical modeling of piezoelectric energy harvesting, ranging from the linear to nonlinear, from early a single mechanical degree to piezoaeroelastic problems.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3151
Author(s):  
Shuo Yang ◽  
Bin Wu ◽  
Xiucheng Liu ◽  
Mingzhi Li ◽  
Heying Wang ◽  
...  

In this study, a novel piezoelectric energy harvester (PEH) based on the array composite spherical particle chain was constructed and explored in detail through simulation and experimental verification. The power test of the PEH based on array composite particle chains in the self-powered system was realized. Firstly, the model of PEH based on the composite spherical particle chain was constructed to theoretically realize the collection, transformation, and storage of impact energy, and the advantages of a composite particle chain in the field of piezoelectric energy harvesting were verified. Secondly, an experimental system was established to test the performance of the PEH, including the stability of the system under a continuous impact load, the power adjustment under different resistances, and the influence of the number of particle chains on the energy harvesting efficiency. Finally, a self-powered supply system was established with the PEH composed of three composite particle chains to realize the power supply of the microelectronic components. This paper presents a method of collecting impact energy based on particle chain structure, and lays an experimental foundation for the application of a composite particle chain in the field of piezoelectric energy harvesting.


2013 ◽  
Vol 52 (10S) ◽  
pp. 10MB03 ◽  
Author(s):  
Hyun Jun Jung ◽  
Daniel Song ◽  
Seong Kwang Hong ◽  
Yooseob Song ◽  
Tae Hyun Sung

2016 ◽  
Vol 09 (05) ◽  
pp. 1650069 ◽  
Author(s):  
Yaoze Liu ◽  
Tongqing Yang ◽  
Fangming Shu

Since the piezoelectric properties were used for energy harvesting, almost all forms of energy harvester needs to be bonded with a mass block to achieve pre-stress. In this article, disc type piezoelectric energy harvester is chosen as the research object and the relationship between mass bonding area and power output is studied. It is found that if the bonding area is changed as curved, which is usually complanate in previous studies, the deformation of the circular piezoelectric ceramic is more uniform and the power output is enhanced. In order to test the change of the deformation, we spray several homocentric annular electrodes on the surface of a piece of bare piezoelectric ceramic and the output of each electrode is tested. Through this optimization method, the power output is enhanced to more than 11[Formula: see text]mW for a matching load about 24[Formula: see text]k[Formula: see text] and a tip mass of 30[Formula: see text]g at its resonant frequency of 139[Formula: see text]Hz.


2008 ◽  
Vol 20 (5) ◽  
pp. 625-632 ◽  
Author(s):  
Yonas Tadesse ◽  
Shujun Zhang ◽  
Shashank Priya

In this study, we report a multimodal energy harvesting device that combines electromagnetic and piezoelectric energy harvesting mechanism. The device consists of piezoelectric crystals bonded to a cantilever beam. The tip of the cantilever beam has an attached permanent magnet which, oscillates within a stationary coil fixed to the top of the package. The permanent magnet serves two purpose (i) acts as a tip mass for the cantilever beam and lowers the resonance frequency, and (ii) acts as a core which oscillates between the inductive coils resulting in electric current generation through Faraday's effect. Thus, this design combines the energy harvesting from two different mechanisms, piezoelectric and electromagnetic, on the same platform. The prototype system was optimized using the finite element software, ANSYS, to find the resonance frequency and stress distribution. The power generated from the fabricated prototype was found to be 0.25 W using the electromagnetic mechanism and 0.25 mW using the piezoelectric mechanism at 35 g acceleration and 20 Hz frequency.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 3610-3626 ◽  
Author(s):  
Mahidur R. Sarker ◽  
Ramizi Mohamed ◽  
Mohamad Hanif MD. Saad ◽  
Azah Mohamed

Sign in / Sign up

Export Citation Format

Share Document