Vulnerability Assessment of Urban Intersections apropos of Incident Impact on Road Network and Identification of Critical Intersections

Author(s):  
Kaniska Ghosh ◽  
Bhargab Maitra

One of the major challenges in a transportation network management program is responding to traffic incidents such as traffic crashes, disabled vehicles, spilled cargo, road debris, and so forth, at or near intersections. Intersections are vulnerable with respect to their susceptibility to incidents, therefore, it is important to assess their vulnerability to identify critical intersections for preparing traffic incident management strategies. In the present work, vulnerability of an intersection was measured in relation to the incident impact on surrounding road network using average aggregate network delay. Taking the case study of an urban arterial road network in Kolkata city, a methodology was demonstrated to assess the vulnerability of intersections using traffic microsimulation during peak and off-peak periods. A traffic microsimulation model was developed for this purpose and different incident scenarios were simulated to assess the vulnerability of various intersections. The intersections were then ranked in order of their vulnerability. Some key factors governing vulnerability of intersections were identified and an expert opinion survey was also conducted to assess the location-specific relevance of those factors for both peak and off-peak hour conditions using fuzzy analysis. Based on the analysis of expert opinion data, intersections were also ranked as per their vulnerability for comparative purposes. The rankings of intersections as obtained from traffic microsimulation and expert opinion analyses were found to be in agreement in the present context. However, traffic microsimulation as an approach is preferred over expert opinion because of its inherent strengths for vulnerability assessment and identification of critical intersections.

Author(s):  
Xu Zhang ◽  
Reginald R. Souleyrette ◽  
Eric Green ◽  
Teng Wang ◽  
Mei Chen ◽  
...  

Traffic incidents remain all too common. They negatively affect the safety of the traveling public and emergency responders and cause significant traffic delays. Congestion associated with incidents can instigate secondary crashes, exacerbating safety risks and economic costs. Traffic incident management (TIM) provides an effective approach for managing highway incidents and reducing their occurrence and impacts. The paper discusses the establishment and methods of calculation for five TIM performance measures that are used by the Kentucky Transportation Cabinet (KYTC) to improve incident response. The measures are: roadway clearance time, incident clearance time, secondary crashes, first responder vehicle crashes, and commercial motor vehicle crashes. Ongoing tracking and analysis of these metrics aid the KYTC in its efforts to comprehensively evaluate its TIM program and make continuous improvements. As part of this effort, a fully interactive TIM dashboard was developed using the Microsoft Power BI platform. Dashboard users can apply various spatial and temporal filters to identify trends at the state, district, county, and agency level. The dashboard also supports dynamic visualizations such as time-series plots and choropleth maps. With the TIM dashboard in place, KYTC personnel, as well as staff at other transportation agencies, can identify the strengths and weaknesses of their incident management strategies and revise practices accordingly.


Author(s):  
Mitchell G. Hadfield ◽  
Logan S. Bennett ◽  
Grant G. Schultz ◽  
Mitsuru Saito ◽  
Dennis L. Eggett

2009 ◽  
Vol 2 (2/3) ◽  
pp. 155 ◽  
Author(s):  
Kaan M.A. Ozbay ◽  
Weihua Xiao ◽  
Gaurav Jaiswal ◽  
Bekir Bartin ◽  
Pushkin Kachroo ◽  
...  

2012 ◽  
Vol 48 (3) ◽  
Author(s):  
Chih-Sheng Chou ◽  
Elise Miller-Hooks

In this paper, a three-stage time-saving process for conducting traffic incident management (TIM) program benefit evaluation is proposed. This process relies on a developed property-based incident generation (P-BIG) procedure designed to assist in generating a set of incident scenarios that are representative of the historical incident data set and simultaneously not overly large in number so as to induce extensive computational burden. The proposed procedure was applied in evaluating the benefits of an existing TIM program for the purpose of assessing the proposed procedure's predictive power. Results of experiments show that the procedure results in benefit estimates within 5% of the value derived employing all historical incidents, while requiring only 18% of the computational effort.


2018 ◽  
Vol 23 (11) ◽  
pp. 2087 ◽  
Author(s):  
Peng-Yu Jin ◽  
Lu Tian ◽  
Lei Chen ◽  
Xiao-Yue Hong

Understanding pest species composition and their geographic distribution of important spider mites is fundamental and indispensable to establish an integrated pest management program. From a long-term survey during 2008–2017 in mainland China, we found that Tetranychus truncatus was the most frequently sampled Tetranychus spider mite (48.5%), followed by T. pueraricola (21.2%), T. kanzawai (12.5%), T. urticae (red) (5.7%) and T. urticae (green) (4.5%). Among them, T. truncatus was the major mite pest in the north of China. T. kanzawai was the dominant species in the Middle and Lower Reaches of the Yangtze River Region and T. pueraricola was the most important species in the southwest region. Other common and serious pests include Amphitetranychus viennensis (6.8%) and Panonychus citri (3.8%). This pattern was largely different from that in 2002–2004, when T. urticae (green and red) was believed to be the most serious mite pest. The factors involved in the change of species composition are not clear and need more exploration. We suggested that the increasing corn planting range may be partly responsible for the conversion of dominant species from other spider mites to T. truncatus. Further research on the mechanisms underlying the change of dominant species will help develop integrated management strategies.


Author(s):  
Haozhe Cong ◽  
Cong Chen ◽  
Pei-Sung Lin ◽  
Guohui Zhang ◽  
John Milton ◽  
...  

Highway traffic incidents induce a significant loss of life, economy, and productivity through injuries and fatalities, extended travel time and delay, and excessive energy consumption and air pollution. Traffic emergency management during incident conditions is the core element of active traffic management, and it is of practical significance to accurately understand the duration time distribution for typical traffic incident types and the factors that influence incident duration. This study proposes a dual-learning Bayesian network (BN) model to estimate traffic incident duration and to examine the influence of heterogeneous factors on the length of duration based on expert knowledge of traffic incident management and highway incident data collected in Zhejiang Province, China. Fifteen variables related to three aspects of traffic incidents, including incident information, incident consequences, and rescue resources, were included in the analysis. The trained BN model achieves favorable performance in several areas, including classification accuracy, the receiver operating characteristic (ROC) curve, and the area under curve (AUC) value. A classification matrix, and significant variables and their heterogeneous influences are identified accordingly. The research findings from this study provide beneficial reference to the understanding of decision-making in traffic incident response and process, active traffic incident management, and intelligent transportation systems.


Water Policy ◽  
2014 ◽  
Vol 16 (4) ◽  
pp. 720-738 ◽  
Author(s):  
Mahesh Gautam ◽  
Kumud Acharya ◽  
Seth A. Shanahan

The Las Vegas Wash is a dynamic channel system that drains the Las Vegas Valley (3,950 km2) into Lake Mead and the lower Colorado River, which provides drinking water to southern California, Arizona, and southern Nevada. In the last few decades the Las Vegas Wash has undergone massive changes in terms of channel degradation and bank erosion followed by recovery and restoration efforts. The evolution of the Las Vegas Wash is interlinked with urbanization, water use, and wastewater discharge. This article reviews the historical dynamics of the Las Vegas Wash in the context of restoration: evaluates the ongoing activities in the Las Vegas Wash against an established framework and success criteria; summarizes lessons learned; and discusses challenges. The ongoing activities in the Las Vegas Wash differ from other regional restoration projects in that there is a lack of an appropriate historical reference to which restoration goals should be targeted. Keys to the success of the Las Vegas Wash restoration and management program appear to be strong interagency collaboration, funding availability, effective outreach and monitoring efforts, and adaptive management strategies based on pragmatic urban values. There is a potential for realignment of existing resources for more practical ecological restoration goals.


2021 ◽  
Vol 22 (1) ◽  
pp. 15-28
Author(s):  
K. Sai Sahitya ◽  
Csrk Prasad

Abstract A sustainable transportation system is possible only through an efficient evaluation of transportation network performance. The efficiency of the transport network structure is analyzed in terms of its connectivity, accessibility, network development, and spatial pattern. This study primarily aims to propose a methodology for modeling the accessibility based on the structural parameters of the urban road network. Accessibility depends on the arrangement of the urban road network structure. The influence of the structural parameters on the accessibility is modeled using Multiple Linear Regression (MLR) analysis. The study attempts to introduce two methods of Artificial Intelligence (AI) namely Artificial Neural Networks (ANN) and Adaptive network-based neuro-fuzzy inference system (ANFIS) in modeling the urban road network accessibility. The study also focuses on comparing the results obtained from MLR, ANN and ANFIS modeling techniques in predicting the accessibility. The results of the study present that the structural parameters of the road network have a considerable impact on accessibility. ANFIS method has shown the best performance in modeling the road network accessibility with a MAPE value of 0.287%. The present study adopted Geographical Information Systems (GIS) to quantify, extract and analyze different features of the urban transportation network structure. The combination of GIS, ANN, and ANFIS help in improved decision-making. The results of the study may be used by transportation planning authorities to implement better planning practices in order to improve accessibility.


Sign in / Sign up

Export Citation Format

Share Document