Two-Lane Highway Crash Severities: Correlated Random Parameters Modeling Versus Incorporating Interaction Effects

Author(s):  
Ahmed Farid ◽  
Anas Alrejjal ◽  
Khaled Ksaibati

Two-lane highways represent the majority of highways in the U.S. and their safety is of crucial concern. Even though road safety researchers intensively evaluated two-lane highway safety, past studies were challenged by a methodological hindrance, namely that of correlated random parameters (CRP) modeling methods. Random parameters models capture unobserved heterogeneity effects of crash contributing factors, while CRP models offer the additional benefit of capturing correlations among variables inducing such unobserved heterogeneity effects. However, CRP models do not permit specifying pairs of regressors, with statistically insignificant correlations, to be uncorrelated. In this research, it was demonstrated that the conventional uncorrelated random parameters ordinal probit (URPOP) structure with interaction effects outperformed the correlated random parameters ordinal probit (CRPOP) structure when modeling injury severity risks of two-lane highway crashes in Wyoming. As per the former model’s results, speeding, head-on collisions, sideswipe opposite-direction collisions, intersecting-direction collisions, motorcycle involvement, impaired driving, distracted driving, the interaction effect of speeding with motorcycle involvement, that of head-on collisions with impaired driving, and that of head-on collisions with commercial vehicle involvement all raised the likelihood of sustaining severe injuries. Conversely, leaving the crash scene, proper seat belt use, wet road surfaces, and the interaction effect of impaired driving with motorcycle involvement alleviated the risk of incurring severe injuries. The superiority of the proposed model and its reduced computation time warrant its recommendation for implementation in future studies. Also, from a practical perspective, safety mitigation measures are suggested based on this research’s findings.

Author(s):  
Chen ◽  
Song ◽  
Ma

The existing studies on drivers’ injury severity include numerous statistical models that assess potential factors affecting the level of injury. These models should address specific concerns tailored to different crash characteristics. For rear-end crashes, potential correlation in injury severity may present between the two drivers involved in the same crash. Moreover, there may exist unobserved heterogeneity considering parameter effects, which may vary across both crashes and individuals. To address these concerns, a random parameters bivariate ordered probit model has been developed to examine factors affecting injury sustained by two drivers involved in the same rear-end crash between passenger cars. Taking both the within-crash correlation and unobserved heterogeneity into consideration, the proposed model outperforms the two separate ordered probit models with fixed parameters. The value of the correlation parameter demonstrates that there indeed exists significant correlation between two drivers’ injuries. Driver age, gender, vehicle, airbag or seat belt use, traffic flow, etc., are found to affect injury severity for both the two drivers. Some differences can also be found between the two drivers, such as the effect of light condition, crash season, crash position, etc. The approach utilized provides a possible use for dealing with similar injury severity analysis in future work.


Author(s):  
Miao Yu ◽  
Jinxing Shen ◽  
Changxi Ma

Because of the high percentage of fatalities and severe injuries in wrong-way driving (WWD) crashes, numerous studies have focused on identifying contributing factors to the occurrence of WWD crashes. However, a limited number of research effort has investigated the factors associated with driver injury-severity in WWD crashes. This study intends to bridge the gap using a random parameter logit model with heterogeneity in means and variances approach that can account for the unobserved heterogeneity in the data set. Police-reported crash data collected from 2014 to 2017 in North Carolina are used. Four injury-severity levels are defined: fatal injury, severe injury, possible injury, and no injury. Explanatory variables, including driver characteristics, roadway characteristics, environmental characteristics, and crash characteristics, are used. Estimation results demonstrate that factors, including the involvement of alcohol, rural area, principal arterial, high speed limit (>60 mph), dark-lighted conditions, run-off-road collision, and head-on collision, significantly increase the severity levels in WWD crashes. Several policy implications are designed and recommended based on findings.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 460 ◽  
Author(s):  
Mahdi Rezapour ◽  
Khaled Ksaibati

There is growing interest in implementation of the mixed model to account for heterogeneity across population observations. However, it has been argued that the assumption of independent and identically distributed (i.i.d) error terms might not be realistic, and for some observations the scale of the error is greater than others. Consequently, that might result in the error terms’ scale to be varied across those observations. As the standard mixed model could not account for the aforementioned attribute of the observations, extended model, allowing for scale heterogeneity, has been proposed to relax the equal error terms across observations. Thus, in this study we extended the mixed model to the model with heterogeneity in scale, or generalized multinomial logit model (GMNL), to see if accounting for the scale heterogeneity, by adding more flexibility to the distribution, would result in an improvement in the model fit. The study used the choice data related to wearing seat belt across front-seat passengers in Wyoming, with all attributes being individual-specific. The results highlighted that although the effect of the scale parameter was significant, the scale effect was trivial, and accounting for the effect at the cost of added parameters would result in a loss of model fit compared with the standard mixed model. Besides considering the standard mixed and the GMNL, the models with correlated random parameters were considered. The results highlighted that despite having significant correlation across the majority of the random parameters, the goodness of fits favors more parsimonious models with no correlation. The results of this study are specific to the dataset used in this study, and due to the possible fact that the heterogeneity in observations related to the front-seat passengers seat belt use might not be extreme, and do not require extra layer to account for the scale heterogeneity, or accounting for the scale heterogeneity at the cost of added parameters might not be required. Extensive discussion has been made in the content of this paper about the model parameters’ estimations and the mathematical formulation of the methods.


Safety ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 32
Author(s):  
Syed As-Sadeq Tahfim ◽  
Chen Yan

The unobserved heterogeneity in traffic crash data hides certain relationships between the contributory factors and injury severity. The literature has been limited in exploring different types of clustering methods for the analysis of the injury severity in crashes involving large trucks. Additionally, the variability of data type in traffic crash data has rarely been addressed. This study explored the application of the k-prototypes clustering method to countermeasure the unobserved heterogeneity in large truck-involved crashes that had occurred in the United States between the period of 2016 to 2019. The study segmented the entire dataset (EDS) into three homogeneous clusters. Four gradient boosted decision trees (GBDT) models were developed on the EDS and individual clusters to predict the injury severity in crashes involving large trucks. The list of input features included crash characteristics, truck characteristics, roadway attributes, time and location of the crash, and environmental factors. Each cluster-based GBDT model was compared with the EDS-based model. Two of the three cluster-based models showed significant improvement in their predicting performances. Additionally, feature analysis using the SHAP (Shapley additive explanations) method identified few new important features in each cluster and showed that some features have a different degree of effects on severe injuries in the individual clusters. The current study concluded that the k-prototypes clustering-based GBDT model is a promising approach to reveal hidden insights, which can be used to improve safety measures, roadway conditions and policies for the prevention of severe injuries in crashes involving large trucks.


Author(s):  
Chunfu Xin ◽  
Zhenyu Wang ◽  
Chanyoung Lee ◽  
Pei-Sung Lin

Horizontal curves have been of great interest to transportation researchers because of expected safety hazards for motorcyclists. The impacts of horizontal curve design on motorcycle crash injuries are not well documented in previous studies. The current study aimed to investigate and to quantify the effects of horizontal curve design and associated factors on the injury severity of single-motorcycle crashes with consideration of the issue of unobserved heterogeneity. A mixed-effects logistic model was developed on the basis of 2,168 single-motorcycle crashes, which were collected on 8,597 horizontal curves in Florida for a period of 11 years (2005 to 2015). Four normally distributed random parameters (moderate curves, reverse curves, older riders, and male riders) were identified. The modeling results showed that sharp curves (radius <1,500 ft) compared with flat curves (radius ≥4,000 ft) tended to increase significantly the probability of severe injury (fatal or incapacitating injury) by 7.7%. In total, 63.8% of single-motorcycle crashes occurring on reverse curves are more likely to result in severe injury, and the remaining 26.2% are less likely to result in severe injury. Motorcyclist safety compensation behaviors (psychologically feeling safe, and then riding aggressively, or vice versa) may result in counterintuitive effects (e.g., vegetation and paved medians, full-access-controlled roads, and pavement conditions) or random parameters (e.g., moderate curve and reverse curve). Other significant factors include lighting conditions (darkness and darkness with lights), weekends, speed or speeding, collision type, alcohol or drug impairment, rider age, and helmet use.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Minho Park ◽  
Dongmin Lee

In this study, a random parameter Tobit regression model approach was used to account for the distinct censoring problem and unobserved heterogeneity in accident data. We used accident rate data (continuous data) instead of accident frequency data (discrete count data) to address the zero cell problems from data where roadway segments do not have any recorded accidents over the observed time period. The unobserved heterogeneity problem is also considered by using random parameters, which are parameter estimates that vary across observations instead of fixed parameters, which are parameter estimates that are fixed/constant over observations. Nine years (1999–2007) of panel data related to severe injury accidents in Washington State, USA, were used to develop the random parameter Tobit model. The results showed that the Tobit regression model with random parameters is a better approach to explore factors influencing severe injury accident rates on roadway segments under consideration of unobserved heterogeneity problems.


Author(s):  
Kenya Freeman ◽  
Michael S. Wogalter

Seat belts have been effective in reducing serious injuries and deaths in vehicular accidents. However, their use by women in the third trimester of pregnancy can cause placental damage and fetal injury or death in relatively minor motor vehicle accidents without severely injuring pregnant women. The lack of seat belt use in similar or more serious accidents could cause severe injuries or death to pregnant women from impacts within the cabin or from ejection, and in turn could lead to fetal injuries or deaths. The present study sought to determine whether women between the ages of 16 and 45 (child bearing age) would like to be informed of these risks. Ninety-nine of the 101 women surveyed indicated they would like to be informed of the risks, and that they would expect to find this information in the vehicle's owners manual. in dealing with the risks, some women indicated that they would wear the seatbelts and others indicated they would not. Most respondents indicated that they would reduce the risks by reducing their use of the vehicle during pregnancy. These results have implications for risk communications.


1992 ◽  
Vol 23 (2) ◽  
pp. 63-71 ◽  
Author(s):  
JoAnn K. Wells ◽  
David F. Preusser ◽  
Allan F. Williams

2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Minho Park ◽  
Dongmin Lee

This study explored factors affecting traffic accidents in roadway segments with and without lighting systems using a random parameter negative binomial model. This study sought to make up for a shortcoming of the fixed parameter model that constrained the estimated parameters to be fixed across observations, by applying random parameters that can take into account unobserved heterogeneity. Three variables had a random parameter among nine significant variables in segments with lighting systems, while seven of the eleven significant variables in a segment without a lighting system had random parameters. The different influence of interstate highway geometrics on vehicle crashes with and without lighting systems found through this study considering unobserved heterogeneity may hopefully help reduce accident frequencies and consider installation of lighting systems on interstate highways in the future.


Sign in / Sign up

Export Citation Format

Share Document