Lincoln Avenue Reclaimed Asphalt Pavement Base Project

Author(s):  
Navneet Garg ◽  
Marshall R. Thompson

Pavement rehabilitation and reconstruction operations have generated large supplies of reclaimed asphalt concrete (RAC). In Illinois crushed RAC generally called recycled asphalt pavement (RAP) supplies are not 100 percent recycled into hot-mix asphalt concrete production. RAP acceptance as a pavement base material has been limited because of the lack of laboratory testing information, information on structural behavior, and field performance data. Limited preliminary laboratory testing and isolated commercial and local road agency paving experience in Illinois indicate that RAP has significant potential as a pavement base. RAP base potential was evaluated by constructing the Lincoln Avenue (Urbana, Illinois) demonstration project during late September and early October 1993. The pavement section is a 305-mm (12-in.) lime-modified, fine-grained subgrade, a 203-mm (8-in.) compacted RAP base, and a 76-mm (3-in.) dense-graded asphalt concrete surface course. The construction, structural response, and performance of the Lincoln Avenue RAP base project were monitored as part of a cooperative study (Illinois Department of Transportation, City of Urbana, and University of Illinois). The accumulated construction, field testing and evaluation, and laboratory testing data and information are summarized. The field construction experience, field control test data, laboratory testing results, falling weight deflectometer results, and Lincoln Avenue performance data indicate that RAP can successfully be used as a conventional flexible pavement base material. The performance of the Lincoln Avenue RAP base pavement (to date) is comparable with that of a crushed stone base.

2018 ◽  
Vol 11 (1) ◽  
pp. 78 ◽  
Author(s):  
Christina Plati ◽  
Brad Cliatt

The present study aims to investigate reclaimed asphalt pavement (RAP) materials for utilization for a pavement base layer material with the goal towards increasing the reutilization of materials and the movement towards increased pavement sustainability. Reduced cost for materials and transportation of materials, overall environmental benefits and many other advantages have led to increased interests in utilizing RAP in pavements including as base materials for highway/roadway construction projects. The potential advantages of utilizing RAP as an unbound base material are known; however, its overall application is still limited partially due to the lack of systematic evaluation studies for the parameterization of RAPs mechanical behavior in pavement design. With this in mind, the current investigation focuses on the resilient modulus (Mr) properties of RAP aggregates in terms of a material’s elastic response. Experimental data from tri-axial stress tests on specimens consisting of RAP, aggregates and a mixture of both materials are investigated. A number of constitutive models for the description of mechanical behavior of RAP materials are investigated. The required procedures for determining the constitutive constants of the constitutive models is outlined for the aforementioned materials. A comparative analysis is applied, and the related results are evaluated. The main conclusion is that RAP materials can be utilized as a base material in the framework of pavement sustainability, as its behavior under loading conditions are similar to virgin aggregate (VA) materials and can be simulated by using appropriate constitutive models for pavement design processes.


2019 ◽  
Vol 278 ◽  
pp. 01012
Author(s):  
Raudhah ◽  
R. Jachrizal Sumabrata ◽  
Sigit Pranowo Hadiwardoyo

Reclaimed asphalt pavement (RAP) comprises removed pavement materials containing high-quality aggregates and asphalt which can be recycled as materials for new pavement construction. It is removed continually for reconstruction, resurfacing, and maintenance purposes, and if not recycled will become waste. This paper determines the influence of using different RAP percentages and asphalt content in warm mix asphalt on the Marshall test results for asphalt concrete binder course (AC-BC) using Retona Blend 55. The percentages of RAP are determined by analyzing the gradation of the existing aggregates in RAP and adding virgin aggregates so that it meets the standard gradation for AC-BC specified by the Ministry of Public Works and Housing. The RAP percentages in the asphalt mixes in this study are 35%, 45%, and 51.55% of total aggregates, while the asphalt contents are 5%, 6%, and 7% of the total mix. To determine the influence of RAP percentage and asphalt content, and to discover if there is any influence from the interaction between these two factors, the analysis is performed using a factorial design. The results of this study show that variation in RAP percentages in the mix has no significant influence on stability, flow, and Marshall quotient, but there is significant influence on void in mineral aggregates (VMA), void in mix (VIM), and void filled with asphalt (VFA). Correlations of 97.5%, 80%, and 95.1%, respectively show that increase in RAP percentage increases VMA and VIM and decreases VFA. The interaction between RAP percentage and asphalt content has no significant influence on Marshall test results.


Sign in / Sign up

Export Citation Format

Share Document