Timing of Lower Extremity Frontal Plane Motion Differs Between Female and Male Athletes During a Landing Task

2011 ◽  
Vol 39 (7) ◽  
pp. 1517-1521 ◽  
Author(s):  
Michael F. Joseph ◽  
Michael Rahl ◽  
Jessica Sheehan ◽  
Bradley MacDougall ◽  
Elaine Horn ◽  
...  
2015 ◽  
Vol 24 (2) ◽  
pp. 198-209 ◽  
Author(s):  
Gregory D. Myer ◽  
Nathaniel A. Bates ◽  
Christopher A. DiCesare ◽  
Kim D. Barber Foss ◽  
Staci M. Thomas ◽  
...  

Context:Due to the limitations of single-center studies in achieving appropriate sampling with relatively rare disorders, multicenter collaborations have been proposed to achieve desired sampling levels. However, documented reliability of biomechanical data is necessary for multicenter injury-prevention studies and is currently unavailable.Objective:To measure the reliability of 3-dimensional (3D) biomechanical waveforms from kinetic and kinematic variables during a single-leg landing (SLL) performed at 3 separate testing facilities.Design:Multicenter reliability study.Setting:3 laboratories.Patients:25 female junior varsity and varsity high school volleyball players who visited each facility over a 1-mo period.Intervention:Subjects were instrumented with 43 reflective markers to record 3D motion as they performed SLLs. During the SLL the athlete balanced on 1 leg, dropped down off of a 31-cm-high box, and landed on the same leg. Kinematic and kinetic data from both legs were processed from 2 trials across the 3 laboratories.Main Outcome Measures:Coefficients of multiple correlations (CMC) were used to statistically compare each joint angle and moment waveform for the first 500 ms of landing.Results:Average CMC for lower-extremity sagittal-plane motion was excellent between laboratories (hip .98, knee .95, ankle .99). Average CMC for lower-extremity frontal-plane motion was also excellent between laboratories (hip .98, knee .80, ankle .93). Kinetic waveforms were repeatable in each plane of rotation (3-center mean CMC ≥.71), while knee sagittal-plane moments were the most consistent measure across sites (3-center mean CMC ≥.94).Conclusions:CMC waveform comparisons were similar relative to the joint measured to previously published reports of between-sessions reliability of sagittal- and frontal-plane biomechanics performed at a single institution. Continued research is needed to further standardize technology and methods to help ensure that highly reliable results can be achieved with multicenter biomechanical screening models.


2019 ◽  
Vol 11 (4) ◽  
Author(s):  
Alexander Agboola-Dobson ◽  
Guowu Wei ◽  
Lei Ren

Recent advancements in powered lower limb prostheses have appeased several difficulties faced by lower limb amputees by using a series-elastic actuator (SEA) to provide powered sagittal plane flexion. Unfortunately, these devices are currently unable to provide both powered sagittal plane flexion and two degrees of freedom (2-DOF) at the ankle, removing the ankle’s capacity to invert/evert, thus severely limiting terrain adaption capabilities and user comfort. The developed 2-DOF ankle system in this paper allows both powered flexion in the sagittal plane and passive rotation in the frontal plane; an SEA emulates the biomechanics of the gastrocnemius and Achilles tendon for flexion while a novel universal-joint system provides the 2-DOF. Several studies were undertaken to thoroughly characterize the capabilities of the device. Under both level- and sloped-ground conditions, ankle torque and kinematic data were obtained by using force-plates and a motion capture system. The device was found to be fully capable of providing powered sagittal plane motion and torque very close to that of a biological ankle while simultaneously being able to adapt to sloped terrain by undergoing frontal plane motion, thus providing 2-DOF at the ankle. These findings demonstrate that the device presented in this paper poses radical improvements to powered prosthetic ankle-foot device (PAFD) design.


Foot & Ankle ◽  
1987 ◽  
Vol 7 (4) ◽  
pp. 197-217 ◽  
Author(s):  
Peter R. Cavanagh

The role of quantitative biomechanical measurements in the evaluation of the running patient is discussed. Many techniques are now available to provide insight into the external mechanics of lower extremity action during running, and results from such measurements are presented for symptom-free subjects at distance running speeds. Details of stride length, stride time, and foot placement are first presented followed by a discussion of kinematic data, including stick figures, angle-time graphs, and angle-angle diagrams for the sagittal plane motion of the hip, knee, and ankle joints. The measurement of rearfoot motion, as an approximation of coronal plane subtalar joint movements, is also discussed. Results from acceleration, force, and pressure measurements are considered, and the assertion is made that bilateral asymmetry in many of these measures is a fairly common finding. There are, at present, few reports in the literature of the application of biomechanical techniques to the evaluation of patients with running injuries. It is anticipated that there will be rapid developments in this area in the future and that this will provide considerable insight into the etiology, diagnosis, and treatment of running injuries.


2020 ◽  
Vol 25 (6) ◽  
pp. 323-327
Author(s):  
Steven J. Smith ◽  
Cameron J. Powden

Ensuring ankle stability while allowing for functional movement is important when returning patients to physical activity and attempting to prevent injury. The purpose of this study was to examine the effectiveness of the TayCo external and a lace-up ankle brace on lower extremity function, dynamic balance, and motion in 18 physically active participants. Significantly greater range of motion was demonstrated for the TayCo brace compared with the lace-up brace for dorsiflexion and plantar flexion, as well as less range of motion for the TayCo brace compared to the lace-up brace for inversion and eversion. The TayCo brace provided restricted frontal plane motion while allowing increased sagittal plane motion without impacting performance measures.


2019 ◽  
Vol 35 (5) ◽  
pp. 305-311
Author(s):  
Eric Foch ◽  
Clare E. Milner

It is unknown if female runners who have sustained multiple iliotibial band syndrome occurrences run differently compared with runners who developed the injury once or controls. Therefore, the purpose of this study was to determine if differences existed in coordination patterns and coordination variability among female runners with recurrent iliotibial band syndrome, 1 iliotibial band syndrome occurrence, and controls. Overground running trials were collected for 36 female runners (n = 18 controls). Lower extremity coordination patterns were examined during running via a vector coding analysis. Coordination variability was calculated via the ellipse area method. Separate 1-way (group) Kruskal–Wallis tests were performed to compare each coordination pattern and coordination variability. Lower extremity coordination between frontal plane hip–transverse plane hip, frontal plane pelvis–frontal plane thigh, and frontal plane thigh–transverse plane shank was similar among groups and so may not be related to the risk of iliotibial band syndrome. Runners with 1 iliotibial band syndrome occurrence demonstrated greater coordination variability for 2 of 3 couplings compared with both controls and runners with recurrent iliotibial band syndrome. Thus, the number of previous injury episodes may influence coordination variability in female runners with a history of iliotibial band syndrome.


2008 ◽  
Vol 40 (Supplement) ◽  
pp. S167-S168
Author(s):  
Jennifer M. Medina McKeon ◽  
Craig R. Denegar ◽  
Jay Hertel

Author(s):  
Andrew D. Nordin ◽  
Joshua P. Bailey ◽  
Janet S. Dufek

The purpose of this examination was to explore the effects of stride length (SL) perturbations on walking gait, relative to preferred walking (PW) and running (PR), via lower extremity range of motion (ROM) variability. ROM variability at the hip, knee, and ankle joints, in the sagittal and frontal planes were used in evaluating motor control of gait, where increased gait variability has been previously implicated in fall susceptibly. Nine participants (5 male, 4 female; mean age 23.11±3.55 years, height 1.72±0.18m, mass 72.66±14.37kg) free from previous lower extremity injury were examined. Kinematic data were acquired using a 12-camera system (Vicon MX T40-S; 200Hz). Data filtering and interpolation included a low pass, 4th order, Butterworth filter (15Hz cutoff) and cubic spline. Five gait trials were completed for PW and PR, with subsequent SL manipulations computed as a percentage of leg length (LL). SL perturbations included 60%, 80%, 100%, 120%, and 140% of LL. Kinematic analysis involved one stride (two steps) during each gait trial, assessing ROM at the hip, knee, and ankle from heel contact to toe-off for each limb, in the sagittal and frontal planes. Variability was expressed using coefficient of variation (%). Comparisons were made using 3×7 (joint × stride condition) mixed model ANOVAs, with repeated measures on stride condition (α = 0.05), using SPSS 20.0. Differences in lower extremity ROM variability were detected among stride conditions in the frontal and sagittal planes (F[3.185,76.451] = 3.004, p = .033; F[4.595,110.279] = 2.834, p = .022, respectively). Greater ROM variability was observed at, and in excess of SLs of 100%LL relative to PW in the frontal plane (PW: 9.2±4.2%; 100%LL: 11.8±3.6%, p = .014; 120%LL: 13.5±5.8%, p = .046; 140%LL: 13.8±6.5%, p = .016), and between SLs of 80%LL and 120%LL in the sagittal plane (4.9±3.0%; 7.8±4.7%, p = .046, respectively). From this, PW appeared to occur within SLs of 60%LL to 80%LL, while SLs exceeding 100%LL resulted in increased lower extremity ROM variability. This may have consequences for fall susceptibility at increased stride lengths during walking. PR did not reveal significant variability differences (p>.05) compared to walking conditions in either the sagittal or frontal plane (7.5±5.0%; 12.8±7.7%, respectively), suggesting that running represents a separate, but stable gait pattern. In the sagittal plane, ROM variability was significantly lower at the hip (3.9±1.5%), relative to the ankle (8.4±1.6%, p<.001) and knee joints (7.4±2.6%, p = .001), suggesting that gait control may be more active at the ankle and knee joints. Future investigations should examine kinetic changes in gait when altering stride length.


1992 ◽  
Vol 82 (4) ◽  
pp. 202-207 ◽  
Author(s):  
RL Blake ◽  
H Ferguson

The addition of an extrinsic rearfoot post to an orthotic device allows the podiatric practitioner to modify the function of the device. Specifically, rearfoot posts are used to allow for a more inverted heel position at contact, to provide greater resistance to abnormal frontal plane motion of the calcaneus and to provide for motion for shock absorption. The authors present nine prescription variables that each provide for a specific functional change to be incorporated into the orthotic device.


2004 ◽  
Vol 36 (Supplement) ◽  
pp. S345-S346
Author(s):  
Thomas C. Windley ◽  
Anthony S. Kulas ◽  
Randy J. Schmitz ◽  
David H. Perrin ◽  
Sandra J. Shultz

2004 ◽  
Vol 36 (Supplement) ◽  
pp. S345???S346
Author(s):  
Thomas C. Windley ◽  
Anthony S. Kulas ◽  
Randy J. Schmitz ◽  
David H. Perrin ◽  
Sandra J. Shultz

Sign in / Sign up

Export Citation Format

Share Document