Tibiofemoral Angle, Not Q-angle, is Related to Frontal Plane Lower Extremity Kinematics During a Weight-Bearing Perturbation

2004 ◽  
Vol 36 (Supplement) ◽  
pp. S345-S346
Author(s):  
Thomas C. Windley ◽  
Anthony S. Kulas ◽  
Randy J. Schmitz ◽  
David H. Perrin ◽  
Sandra J. Shultz
2004 ◽  
Vol 36 (Supplement) ◽  
pp. S345???S346
Author(s):  
Thomas C. Windley ◽  
Anthony S. Kulas ◽  
Randy J. Schmitz ◽  
David H. Perrin ◽  
Sandra J. Shultz

2021 ◽  
Vol 9 (7_suppl3) ◽  
pp. 2325967121S0011
Author(s):  
Katie Kim ◽  
Michael Saper

Background: Gymnastics exposes the body to many different types of stressors ranging from repetitive motion, high impact loading, extreme weight bearing, and hyperextension. These stressors predispose the spine and upper and lower extremities to injury. In fact, among female sports, gymnastics has the highest rate of injury each year. Purpose: The purpose of this study was to systematically review the literature on location and types of orthopedic injuries in adolescent (≤20 years) gymnasts. Methods: The Pubmed, Medline, EMBASE, EBSCO (CINAHL) and Web of Science databases were systematically searched according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines to identify all studies reporting orthopedic injuries in adolescent and young adult gymnasts. All aspects of injuries were extracted and analyzed including location, type and rates of orthopedic injuries. Results: Screening yielded 22 eligible studies with a total of 427,225 patients. Twenty of 22 studies reported upper extremity injuries of which four specifically focused on wrist injuries. Eight studies reported lower extremity injuries. Nine studies reported back/spinal injuries. Seven studies investigated each body location of injury; one study reported the upper extremity as the most common location for injury and six studies reported the lower extremity as the most common location for injury. Of those seven studies, five (23%) reported sprains and strains as the most common injury. One study reported fractures as the most common injury. Conclusion: There is considerable variation in reported injury location. Some studies focused specifically on the spine/back or wrist. The type of gymnastics each patient participated in was also different, contributing to which area of the body was more heavily stressed, or lacking. Current literature lacks data to fully provide evidence regarding which body region is more frequently injured and the type of injury sustained.


2021 ◽  
pp. 110565
Author(s):  
Marie Matos ◽  
Eric J. Perreault ◽  
Daniel Ludvig

2017 ◽  
Vol 32 (2) ◽  
pp. 179-190 ◽  
Author(s):  
Gretchen B Salsich ◽  
Barbara Yemm ◽  
Karen Steger-May ◽  
Catherine E Lang ◽  
Linda R Van Dillen

Objective: To investigate whether a novel, task-specific training intervention that focused on correcting pain-producing movement patterns was feasible and whether it would improve hip and knee kinematics, pain, and function in women with patellofemoral pain. Design: Prospective, non-randomized, within-group, double baseline, feasibility intervention study. Subjects: A total of 25 women with patellofemoral pain were enrolled. Intervention: The intervention, delivered 2×/week for six weeks, consisted of supervised, high-repetition practice of daily weight-bearing and recreational activities. Activities were selected and progressed based on participants’ interest and ability to maintain optimal alignment without increasing pain. Main measures: Primary feasibility outcomes were recruitment, retention, adherence, and treatment credibility (Credibility/Expectancy Questionnaire). Secondary outcomes assessing intervention effects were hip and knee kinematics, pain (visual analog scale: current, average in past week, maximum in past week), and function (Patient-Specific Functional Scale). Results: A total of 25 participants were recruited and 23 were retained (92% retention). Self-reported average daily adherence was 79% and participants were able to perform their prescribed home program correctly (reduced hip and knee frontal plane angles) by the second intervention visit. On average, treatment credibility was rated 25 (out of 27) and expectancy was rated 22 (out of 27). Hip and knee kinematics, pain, and function improved following the intervention when compared to the control phase. Conclusion: Based on the feasibility outcomes and preliminary intervention effects, this task-specific training intervention warrants further investigation and should be evaluated in a larger, randomized clinical trial.


2013 ◽  
Vol 200 (1) ◽  
pp. 146-148 ◽  
Author(s):  
Esa K. J. Tuominen ◽  
Jussi Kankare ◽  
Seppo K. Koskinen ◽  
Kimmo T. Mattila

Author(s):  
Nicholas H. Yang ◽  
H. Nayeb-Hashemi ◽  
Paul K. Canavan

Osteoarthritis (OA) is a degenerative disease of articular cartilage that may lead to pain, limited mobility and joint deformation. It has been reported that abnormal stresses and irregular stress distribution may lead to the initiation and progression of OA. Body weight and the frontal plane tibiofemoral angle are two biomechanical factors which could lead to abnormal stresses and irregular stress distribution at the knee. The tibiofemoral angle is defined as the angle made by the intersection of the mechanical axis of the tibia with the mechanical axis of the femur in the frontal plane. In this study, reflective markers were placed on the subjects’ lower extremity bony landmarks and tracked using motion analysis. Motion analysis data and force platform data were collected together during single-leg stance, double-leg stance and walking gait from three healthy subjects with no history of osteoarthritis (OA), one with normal tibiofemoral angle (7.67°), one with varus (bow-legged) angle (0.20°) and one with valgus (knocked-knee) angle (10.34°). The resultant moment and forces in the knee were derived from the data of the motion analysis and force platform experiments using inverse dynamics. The results showed that Subject 1 (0.20° valgus) had a varus moment of 0.38 N-m/kg, during single-leg stance, a varus moment of 0.036 N-m/kg during static double-leg stance and a maximum varus moment of 0.49 N-m/kg during the stance phase of the gait cycle. Subject 2 (7.67° valgus tibiofemoral angle) had a varus moment of 0.31 N-m/kg, during single-leg stance, a valgus moment of 0.046 N-m/kg during static double-leg stance and a maximum varus moment of 0.37 N-m/kg during the stance phase of the gait cycle. Subject 3 (10.34° valgus tibiofemoral angle) had a varus moment of 0.30 N-m/kg, during single-leg stance, a valgus moment of 0.040 N-m/kg during static double-leg stance and a maximum varus moment of 0.34 N-m/kg during the stance phase of the gait cycle. In general, the results show that the varus moment at the knee joint increased with varus knee alignment in static single-leg stance and gait. The results of the motion analysis were used to obtain the knee joint contact stress by finite element analysis (FEA). Three-dimensional (3-D) knee models were constructed with sagittal view MRI of the knee. The knee model included the bony geometry of the knee, the femoral and tibial articular cartilage, the lateral and medial menisci and the cruciate and the collateral ligaments. In initial FEA simulations, bones were modeled as rigid, articular cartilage was modeled as isotropic elastic, menisci were modeled as transversely isotopic elastic, and the ligaments were modeled as 1-D nonlinear springs. The material properties of the different knee components were taken from previously published literature of validated FEA models. The results showed that applying the axial load and varus moment determined from the motion analysis to the FEA model Subject 1 had a Von Mises stress of 1.71 MPa at the tibial cartilage while Subjects 2 and 3 both had Von Mises stresses of approximately 1.191 MPa. The results show that individuals with varus alignment at the knee will be exposed to greater stress at the medial compartment of the articular cartilage of the tibia due to the increased varus moment that occurs during single leg support.


2020 ◽  
Vol 41 (Supplement_1) ◽  
pp. S256-S257
Author(s):  
Lisa LePage

Abstract Introduction Distal lower extremity STSG’s present a challenge with the balance of early mobility and immobilization of the ankle. Traditional commercially available ambulation boots or pre-fabricated orthotics may impose circumferential compression endangering graft integrity. Custom fabricated posterior AFO’s comprised of thermoplastic, scotch cast or fiberglass materials are not recommended for weight-bearing of the lower extremity during mobility/ambulation. What may also hinder promotion of early mobility is having a multitude of injuries or advanced age with decreased ability to adhere to a LE NWB status. An anterior approach to immobilization of the ankle was thought of to free the plantar surface of the foot for weight-bearing. The open concept of the orthosis itself minimizes direct contact with the involved LE graft. This promotes graft integrity during mobility with ankle immobilization. Methods Materials: Thermoplastic material, scissors, strapping, dense adhesive foam, adhesive Velcro and a heat gun. Fabrication: Measure the point of distance between where the desired proximal end of the orthosis would be to the patient’s metatarsal heads on the dorsal aspect of the foot; double it to calculate the amount of material needed. The width of the material should be approx. 3 to 4 inches. Warm material and tri-fold it together reducing width to approx. 1 ½ to 2 inches to increase stability. Shape the folded material into a continuous oval and place on the patient’s distal LE. As the material cools, shape the oval away from the medial/ lateral aspects of the distal LE restricting the points of contact to the anterior most proximal and distal aspect of the desired splint parameters. Remove once cooled and add dense adhesive foam to the 2 points of contact that will rest against the patient. This will allow for a slight area of “give” against the patient during weight-bearing of the LE/foot. Velcro and straps are added to the proximal/distal ends of the oval; heating the adhesive side will imbed the Velcro allowing increased durability with repeated donning/doffing. Results The open construction of this orthosis allows different degrees of weight-bearing eliminating contact with the distal LE STSG. The forefoot and heel are available to weight bear safely within the confines of the open anterior ankle foot orthosis. Conclusions Patients have been trialed with/without an AD with success in the achievement of ankle immobilization with mobility. Weight-bearing instructions that accompany this splint wear is foot placement rather than a normal heel strike cadence to avoid undue pressure at the proximal aspect of the splint on the lower extremity. Applicability of Research to Practice This splint has been successfully utilized for immobilization without compromise to STSG integrity due to the anterior open support it offers the ankle. Perhaps this concept could be applied to other joints to avoid direct contact of the splint with STSG during the initial stages of healing.


2019 ◽  
Vol 35 (5) ◽  
pp. 305-311
Author(s):  
Eric Foch ◽  
Clare E. Milner

It is unknown if female runners who have sustained multiple iliotibial band syndrome occurrences run differently compared with runners who developed the injury once or controls. Therefore, the purpose of this study was to determine if differences existed in coordination patterns and coordination variability among female runners with recurrent iliotibial band syndrome, 1 iliotibial band syndrome occurrence, and controls. Overground running trials were collected for 36 female runners (n = 18 controls). Lower extremity coordination patterns were examined during running via a vector coding analysis. Coordination variability was calculated via the ellipse area method. Separate 1-way (group) Kruskal–Wallis tests were performed to compare each coordination pattern and coordination variability. Lower extremity coordination between frontal plane hip–transverse plane hip, frontal plane pelvis–frontal plane thigh, and frontal plane thigh–transverse plane shank was similar among groups and so may not be related to the risk of iliotibial band syndrome. Runners with 1 iliotibial band syndrome occurrence demonstrated greater coordination variability for 2 of 3 couplings compared with both controls and runners with recurrent iliotibial band syndrome. Thus, the number of previous injury episodes may influence coordination variability in female runners with a history of iliotibial band syndrome.


2017 ◽  
Vol 52 (6) ◽  
pp. 560-566 ◽  
Author(s):  
Randy J. Schmitz ◽  
David Harrison ◽  
Hsin-Min Wang ◽  
Sandra J. Shultz

Context:  Understanding the factors associated with thicker cartilage in a healthy population is important when developing strategies aimed at minimizing the cartilage thinning associated with knee osteoarthritis progression. Thicker articular cartilage is commonly thought to be healthier cartilage, but whether the sagittal-plane biomechanics important to gait are related to cartilage thickness is unknown. Objective:  To determine the relationship of a weight-bearing region of the medial femoral condyle's cartilage thickness to sagittal gait biomechanics in healthy individuals. Design:  Descriptive laboratory study. Setting:  Laboratory. Patients or Other Participants:  Twenty-eight healthy participants (15 women: age = 21.1 ± 2.1 years, height = 1.63 ± 0.07 m, weight = 64.6 ± 9.9 kg; 13 men: age = 22.1 ± 2.9 years, height = 1.79 ± 0.05 m, weight = 75.2 ± 9.6 kg). Main Outcome Measure(s):  Tibiofemoral angle (°) was obtained via goniometric assessment, thickness of the medial femoral condyle cartilage (mm) was obtained via ultrasound imaging, and peak internal knee-extensor moment (% body weight · height) was measured during 10 trials of over-ground walking at a self-selected pace. We used linear regression to examine the extent to which peak internal knee-extensor moment predicted cartilage thickness after accounting for tibiofemoral angle and sex. Results:  Sex and tibiofemoral angle (12.3° ± 3.2°) were entered in the initial step as control factors (R2 = 0.01, P = .872). In the final step, internal knee-extensor moment (1.5% ± 1.3% body weight · height) was entered, which resulted in greater knee-extensor moment being related to greater cartilage thickness (2.0 ± 0.3 mm; R2Δ = 0.31, PΔ = .003). Conclusion:  Individuals who walked with a greater peak internal knee-extensor moment during gait had a cartilage structure that is generally considered beneficial in a healthy population. Our study offers promising findings that a potentially modifiable biomechanical factor is associated with cartilage status in a healthy population. Establishing these baseline relationships in uninjured populations may help us to better understand potential factors related to maladaptive gait patterns that predispose a person to adverse changes in the cartilage environment.


Sign in / Sign up

Export Citation Format

Share Document