Anatomic and Biomechanical Evaluation of Ulnar Tunnel Position in Medial Ulnar Collateral Ligament Reconstruction

2019 ◽  
Vol 47 (14) ◽  
pp. 3491-3497 ◽  
Author(s):  
Pascual H. Dutton ◽  
Michael B. Banffy ◽  
Trevor J. Nelson ◽  
Melodie F. Metzger

Background: Although numerous techniques of reconstruction of the medial ulnar collateral ligament (mUCL) have been described, limited evidence exists on the biomechanical implication of changing the ulnar tunnel position despite the fact that more recent literature has clarified that the ulnar footprint extends more distally than was appreciated in the past. Purpose: To evaluate the size and location of the native ulnar footprint and assess valgus stability of the medial elbow after UCL reconstruction at 3 ulnar tunnel locations. Study Design: Controlled laboratory study. Methods: Eighteen fresh-frozen cadaveric elbows were dissected to expose the mUCL. The anatomic footprint of the ulnar attachment of the mUCL was measured with a digitizing probe. The area of the ulnar footprint and midpoint relative to the joint line were determined. Medial elbow stability was tested with the mUCL in an intact, deficient, and reconstructed state after the docking technique, with ulnar tunnels placed at 5, 10, or 15 mm from the ulnotrochlear joint line. A 3-N·m valgus torque was applied to the elbow, and valgus rotation of the ulna was recorded via motion-tracking cameras as the elbow was cycled through a full range of motion. After kinematic testing, specimens were loaded to failure at 70° of elbow flexion. Results: The mean ± SD length of the mUCL ulnar footprint was 27.4 ± 3.3 mm. The midpoint of the anatomic footprint was located between the 10- and 15-mm tunnels across all specimens at a mean 13.6 mm from the joint line. Sectioning of the mUCL increased elbow valgus rotation throughout all flexion angles and was statistically significant from 30° to 100° of flexion as compared with the intact elbow ( P < .05). mUCL reconstruction at all 3 tunnel locations restored stability to near intact levels with no significant differences among the 3 ulnar tunnel locations at any flexion angle. Conclusion: Positioning the ulnar graft fixation site up to 15 mm from the ulnotrochlear joint line does not significantly increase valgus rotation in the elbow. Clinical Relevance: A more distal ulnar tunnel may be a viable option to accommodate individual variation in morphology of the proximal ulna or in a revision setting.

2021 ◽  
Vol 9 (9) ◽  
pp. 232596712110389
Author(s):  
R. Nelson Mead ◽  
Trevor J. Nelson ◽  
Orr Limpisvasti ◽  
Neal S. ElAttrache ◽  
Melodie F. Metzger

Background: Medial ulnar collateral ligament (mUCL) repair is growing in popularity as a treatment for younger athletes with mUCL tears. One of the most recent techniques utilizes a collagen-coated suture tape to augment the repair. The most popular repair technique uses a screw for proximal fixation in the humerus. We present an alternative technique that uses suspensory fixation in the proximal humerus. Purpose: To biomechanically compare elbow valgus stability and load to failure of a novel alternative repair technique with suspensory fixation to an mUCL reconstruction. Study Design: Controlled laboratory study. Methods: Eighteen fresh-frozen cadaveric elbows were dissected to expose the mUCL. Medial elbow stability was tested with the mUCL in an intact, deficient—either repaired or reconstructed—state. The repair technique used a suspensory fixation with suture augmentation, and the docking technique was used on all reconstructions. A 3-N·m valgus torque was applied to the elbow, and valgus rotation of the ulna was recorded via motion tracking cameras as the elbow was cycled through a full range of motion. After kinematic testing, specimens were loaded to failure at 70° of elbow flexion. Results: Both ulnar collateral ligament reconstruction and repair restored valgus stability to levels that were not statistically different from intact at all angles of flexion. There was no significant difference in the ultimate torque to failure between repaired and reconstructed mUCLs. Conclusion: There was no significant difference in the valgus strength between the mUCL repair with suspensory fixation and the mUCL reconstruction. Clinical Relevance: Suspensory fixation is an alternative method for proximal fixation in the mUCL without compromising the strength of the construct.


2018 ◽  
Vol 6 (3) ◽  
pp. 232596711876275 ◽  
Author(s):  
Christopher L. Camp ◽  
Hamidreza Jahandar ◽  
Alec M. Sinatro ◽  
Carl W. Imhauser ◽  
David W. Altchek ◽  
...  

Background: A more detailed assessment of the anatomy of the entire medial ulnar collateral ligament complex (MUCLC) is desired as the rate of medial elbow reconstruction surgery continues to rise. Purpose: To quantify the anatomy of the MUCLC, including the anterior bundle (AB), posterior bundle (PB), and transverse ligament (TL). Study Design: Descriptive laboratory study. Methods: Ten unpaired, fresh-frozen cadaveric elbows underwent 3-dimensional (3D) digitization and computed tomography with 3D reconstruction. Ligament footprint areas and geometries, distances to key bony landmarks, and isometry were determined. A surgeon digitized the visual center of each footprint, and this location was compared with the geometric centroid calculated from the outline of the digitized footprint. Results: The mean surface area of the AB was 324.2 mm2, with an origin footprint of 32.3 mm2 and an elongated insertional footprint of 187.6 mm2 (length, 29.7 mm). The mean area of the PB was 116.6 mm2 (origin, 25.9 mm2; insertion, 15.8 mm2), and the mean surface area of the TL was 134.5 mm2 (origin, 21.2 mm2; insertion, 16.7 mm2). The geometric centroids of all footprints could be predicted within 0.8 to 1.3 mm, with the exception of the AB insertion centroid, which was 7.6 mm distal to the perceived center at the apex of the sublime tubercle. While the PB remained relatively isometric from 0° to 90° of flexion ( P = .606), the AB lengthened by 2.2 mm ( P < .001). Conclusion: Contrary to several historical reports, the insertional footprint of the AB was larger, elongated, and tapered. The TL demonstrated a previously unrecognized expansive soft tissue insertion directly onto the AB, and additional analysis of the biomechanical contribution of this structure is needed. Clinical Relevance: These findings may serve as a foundation for future study of the MUCLC and help refine current surgical reconstruction techniques.


2009 ◽  
Vol 37 (5) ◽  
pp. 974-981 ◽  
Author(s):  
Michael G. Ciccotti ◽  
Sorin Siegler ◽  
John A. Kuri ◽  
John H. Thinnes ◽  
Daniel J. Murphy

Background The modified Jobe and Docking techniques are commonly used to reconstruct the elbow's ulnar collateral ligament. Hypothesis Valgus laxity and kinematic coupling after these reconstructive procedures are similar to those of the native ulnar collateral ligament. Study Design Controlled laboratory study. Methods Testing was conducted on 10 pairs of cadaver elbows using a 4 degrees of freedom loading system. Subfailure valgus loads were applied to the native elbows at different flexion angles; motion and ligament elongation were measured. The elbows were then loaded to failure in valgus at 90° of flexion. The reconstructive techniques were then applied and testing was repeated. Results Only the resting length of the anterior portion of the ulnar collateral ligament anterior bundle remained isometric throughout range of motion. Valgus laxity was nearly equal for the native and reconstructed ligaments at flexion angles of 90° or higher. However, both reconstructions provided less valgus stability than the native ulnar collateral ligament at low flexion angles. Kinematic coupling decreased with increased flexion for both native and reconstructed ligaments. Conclusion The modified Jobe and Docking techniques reconstruct restraint of the native ulnar collateral ligament to valgus laxity and kinematic coupling at 90° of flexion and higher angles where peak valgus torque is experienced in the throwing elbow. Clinical Relevance Both reconstructions provide valgus stability comparable to that of the native ulnar collateral ligament at 90° and higher, helping to explain their success in treating throwing athletes. Both reconstructions provide less valgus stability than the native ulnar collateral ligament at low flexion angles, suggesting that patients undergoing ulnar collateral ligament reconstruction should be cautioned against activities that provide valgus stress at low elbow flexion angles, such as side-arm throwing. This study suggests caution against overtightening the reconstructions at the common 30° of flexion.


Author(s):  
Harold A. Cook ◽  
Sam Akhavan ◽  
Patrick J. DeMeo ◽  
Mark Carl Miller

The ulnar collateral ligament (UCL) of the elbow originates on the medial epicondyle of the humerus and inserts on the sublime tubercle of the proximal ulna. This ligament is classically composed of three distinct structures: the anterior bundle, the posterior bundle, and the transverse bundle. Of these three, the anterior bundle has been shown to be the primary stabilizer to valgus load between 20° and 120° of flexion [1]. Injuries to the anterior bundle of the UCL are commonly seen in baseball pitchers, where the valgus load on the elbow during the throwing motion approaches the failure load of the ligament [2].


1999 ◽  
Vol 24 (3) ◽  
pp. 376-378 ◽  
Author(s):  
M. LANZETTA ◽  
A. CHOLLET

We present a case in which an open wound involving the ulnar collateral ligament of the metacarpophalangeal joint of the little finger was treated by ligament reconstruction using a strip of Dacron material, nerve grafting and coverage by a posterior interosseous artery pedicled flap. At a long term follow-up of 4 years, the joint was stable and had a full range of movement.


2008 ◽  
Vol 24 (4) ◽  
pp. 325-332 ◽  
Author(s):  
Jason E. Hsu ◽  
Qiyu Peng ◽  
David A. Schafer ◽  
Jason L. Koh ◽  
Gordon W. Nuber ◽  
...  

The flexor-pronator mass is thought to be the primary dynamic valgus stabilizer of the elbow and protects the ulnar collateral ligament. However, in vivo multiaxis actions of individual muscles of the flexor-pronator group and their roles in valgus stability have not been investigated quantitatively. This study tested the hypothesis that individual muscles of the flexor-pronator muscle group produce a significant varus moment that provides elbow valgus stability. The flexor carpi ulnaris, flexor carpi radialis, and pronator teres were selectively activated, and the resulting multiaxis moments at the elbow measured at 0°, 30°, 60°, and 90° of elbow flexion using a six-axis force sensor were analyzed for their role in generating varus moment and protecting the ulnar collateral ligament. Considerable off-axis moments were generated by each muscle tested. Through the range of elbow flexion, the varus moment was the major component of the multiaxis action of the flexor carpi ulnaris (p< .001). The flexor carpi radialis and pronator teres had significant actions as elbow flexors and pronators (p≤ .032); these muscles also had a significant varus contribution at 90° elbow flexion (p≤.019). The results suggest that the flexor-pronator muscle group plays an important role in valgus stability of the elbow. In particular, the flexor carpi ulnaris creates a significant varus moment, which is important in unloading and protecting the ulnar collateral ligament. Rehabilitation and strengthening of the flexor-pronator muscle group may help prevent failure of the ulnar collateral ligament and may also help compensate for a medially insufficient elbow.


2021 ◽  
Vol 9 (11) ◽  
pp. 232596712110459
Author(s):  
Kanta Yoshioka ◽  
Kanta Matsuzawa ◽  
Tomoya Ikuta ◽  
Sae Maruyama ◽  
Mutsuaki Edama

Background: Ulnar collateral ligament (UCL) injury is a common sports injury among overhead-throwing athletes and causes medial elbow pain and instability. UCL injury is generally diagnosed based on symptoms, physical findings, and image evaluation. To standardize the method for evaluating elbow valgus instability, more information is needed regarding changes in the medial elbow joint space (JS) in healthy elbows. Purpose/Hypothesis: The purpose of this study was to measure the JS during the application of elbow valgus stress at different elbow flexion angles and loads and to clarify the presence of defensive muscle contractions during elbow valgus stress. It was hypothesized that the JS will differ according to different limb positions and loads and that defensive contractions will occur when elbow valgus stress is >90 N. Study Design: Controlled laboratory study. Methods: Elbow joints on the nondominant side were examined in 20 healthy male university students (mean age, 21 ± 0.2 years) at 30°, 60°, and 90° of elbow flexion. To create valgus stress on the elbow, loads of 30, 60, 90, 120, and 150 N were applied with a Telos stress device and with gravity stress on the forearm. The medial JS was measured ultrasonographically during the application of elbow valgus stress. Electrodes were attached to the pronator teres muscle, and defensive muscle contractions were measured using electromyography during the application of elbow valgus stress. Repeated-measures analysis of variance and paired t tests were used to compare the JS at each elbow angle and each valgus stress load, and the Bonferroni method was used as a post hoc test. Results: At 30° of elbow flexion, the JS was significantly higher at 30 N versus 0 N and at 60 N versus 0 or 30 N ( P ≤ .018 for all). At 60° of flexion, the JS was significantly higher at 30 N versus 0 N, at 60 N versus 0 and 30 N, and at 90 N versus 0, 30, and 60 N ( P ≤ .024 for all). At 90° of elbow flexion, the JS was significantly higher at 30 N versus 0 N and at 60 N versus 0 and 30 N ( P ≤ .028 for all). Defensive muscle contraction did not occur at any elbow flexion angles at elbow valgus stress ≤60 N. Conclusion: The lack of muscular contraction at elbow valgus stress ≤60 N may reflect the function of the medial collateral ligament. Clinical Relevance: Elbow valgus stress ≤60 N allows for the evaluation of the joint opening.


2021 ◽  
Vol 26 (3) ◽  
pp. 152-160
Author(s):  
Jong-Pil Kim ◽  
Ji-Kang Park ◽  
Joon-Young Yoo ◽  
Won-Jeong Shin ◽  
Jeong-Sang Kim ◽  
...  

Purpose: The purpose of this study was to evaluate topographic anatomy of the footprints of key ligaments of the elbow and assess their relationships with bony parameters using micro-computed tomography (micro-CT). Additionally, the ratios of type I/III collagen at the medial collateral ligament (MCL) and lateral collateral ligament (LCL) of elbow were investigated.Methods: Eleven cadaveric elbows attached by both the MCL and LCL were scanned using micro-CT and reconstructed three-dimensionally. Additionally, the ligaments were examined under polarized light microscopy to determine the histological characteristics of collagen patterns. Results: Areas of footprints of the MCL and LCL attaching onto the humerus were 133.2±25.8 mm² and 128.3±23.2 mm², respectively. Footprint sizes of anterior and posterior bundles of the MCL in the proximal ulna and lateral ulnar collateral ligament (LUCL) attaching to the proximal ulna averaged to 109.9 mm², 89.2 mm², and 89.7 mm², respectively. There were a positive correlation between footprint size of the MCL and LUCL at the humeral side and a negative correlation between the footprint size of the MCL at humeral side and maximal diameter of the radial head. The collagen I/III ratio of the humeral attachment of the MCL was higher than distal attachment of the MCL. Conclusion: This study provides a better understanding of the pathologies of the MCL and LCL complex of the elbow and their relationships with osseous anatomy and may assist the clinician with an anatomic reconstruction of the ligaments.


2021 ◽  
pp. 036354652110025
Author(s):  
Hiroshi Hattori ◽  
Kiyokazu Akasaka ◽  
Takahiro Otsudo ◽  
Toby Hall ◽  
Katsunobu Sakaguchi ◽  
...  

Background: Medial elbow injury is common in baseball pitchers, with evidence of elbow valgus instability after only 60 consecutive pitches. However, the tissue-specific effects of repetitive pitching on medial elbow stabilizers are largely unknown. Purpose/Hypothesis: This study aimed to investigate changes in the ulnar collateral ligament (UCL) and forearm flexor-pronator muscles (FPMs) during repetitive pitching and factors that relate to identified change. We hypothesized that repetitive pitching would increase elasticity of the medial elbow stabilizers and therefore induce laxity. Study Design: Descriptive laboratory study. Methods: A total of 30 high school baseball pitchers participated (mean ± SD age, 16.6 ± 0.5 years). Each participant pitched 100 times (5 blocks of 20 pitches). The strain ratio, indicating elasticity in the UCL and FPMs, was measured using ultrasound before pitching and after every 20-pitch block. Data for each pitch block were compared using analysis of variance. Multiple regression analysis was used to investigate factors related to the change rate of the strain ratio. Results: The strain ratio of the UCL after 100 pitches was significantly less than that before pitching (before pitching, 4.83 ± 1.70; after 100 pitches, 3.59 ± 1.35; P = .013), but this was not the case for the FPMs (before pitching, 0.57 ± 0.24; after 100 pitches, 0.43 ± 0.18; P = .07). The ratio of the strain ratio in the UCL and FPMs (UCL/FPMs) before pitching (β = −0.385; P = .031) and the elbow flexion range of motion before pitching (β = −0.352; P = .046) were significantly and independently correlated with the change rate of the UCL. Conclusion: Elasticity significantly increased for the UCL, indicating laxity, but not for the FPMs after 100 pitches. Furthermore, the ratio of elasticity (UCL/FPMs) and the elbow flexion range of motion before pitching were significantly related to the change rate of UCL elasticity. Clinical Relevance: To reduce laxity of the UCL, pitchers should be limited to <100 pitches per game. Sustaining a lower level of relative FPMs to UCL elasticity at rest and maintaining a large muscle volume to avoid excessive elbow flexion range of motion may prevent UCL laxity that develops during repetitive pitching.


Sign in / Sign up

Export Citation Format

Share Document