Scaffold With Natural Calcified Cartilage Zone for Osteochondral Defect Repair in Minipigs

2021 ◽  
pp. 036354652110071
Author(s):  
Yang Huang ◽  
Huaquan Fan ◽  
Xiaoyuan Gong ◽  
Liu Yang ◽  
Fuyou Wang

Background: Long-term outcomes of current clinical interventions for osteochondral defect are less than satisfactory. One possible reason is an ignorance of the interface structure between cartilage and subchondral bone, the calcified cartilage zone (CCZ). However, the importance of natural CCZ in osteochondral defects has not been directly described. Purpose: To explore the feasibility of fabricating trilayer scaffold containing natural CCZ for osteochondral defects and the role of CCZ in the repair process. Study Design: Controlled laboratory study. Methods: The scaffold was prepared by cross-linking lyophilized type II collagen sponge and acellular normal pig subchondral bone with or without natural CCZ. Autologous bone marrow stem cells (BMSCs) of minipig were mixed with type II collagen gel and injected into the cartilage layer of the scaffold before operation. Thirty minipigs were randomly divided into CCZ (n = 10), non-CCZ (n = 10), and blank control (n = 10) groups. An 8 mm–diameter full-thickness osteochondral defect was created on the trochlear surface, and scaffold containing BMSCs was transplanted into the defect according to grouping requirements. At 12 and 24 weeks postoperatively, specimens were assessed by macroscopic observation, magnetic resonance imaging examination, and histological observations (hematoxylin and eosin, Safranin O–fast green, type II collagen immunohistochemical, and Sirius red staining). Semiquantitative cartilage repair scoring was conducted using the MOCART (Magnetic Resonance Observation of Cartilage Repair Tissue) system and the O’Driscoll repaired cartilage value system. Results: The defects in the blank control and non-CCZ groups were filled with fibrous tissue, while the cartilage layer of the CCZ group was mainly repaired by hyaline cartilage at 24 weeks postoperatively. The superior repair outcome of the CCZ group was confirmed by MOCART and O’Driscoll score. Conclusion: The trilayer scaffold containing natural CCZ obtained the best repair effect compared with the non-CCZ scaffold and the blank control, indicating the importance of the CCZ in osteochondral tissue engineering. Clinical Relevance: This study demonstrates the necessity to reconstruct CCZ in clinical osteochondral defect repair and provides a possible strategy for osteochondral tissue engineering.

2019 ◽  
Vol 7 (42) ◽  
pp. 6515-6525 ◽  
Author(s):  
Xiaolei Nie ◽  
Yon Jin Chuah ◽  
Pengfei He ◽  
Dong-An Wang

Tissue engineering is a promising approach to repair osteochondral defects, yet successful reconstruction of different layers in an integrated graft, especially the interface remains challenging.


2010 ◽  
Vol 20 ◽  
pp. 134-148 ◽  
Author(s):  
L Calderon ◽  
◽  
E Collin ◽  
D Velasco-Bayon ◽  
M Murphy ◽  
...  

2017 ◽  
Vol 23 (1-2) ◽  
pp. 55-68 ◽  
Author(s):  
Henrique V. Almeida ◽  
Binulal N. Sathy ◽  
Ivan Dudurych ◽  
Conor T. Buckley ◽  
Fergal J. O'Brien ◽  
...  

2007 ◽  
Vol 342-343 ◽  
pp. 89-92 ◽  
Author(s):  
Jae Ho Jeong ◽  
Y.M. Moon ◽  
S.O. Kim ◽  
S.S. Yun ◽  
Hong In Shin

Despite many outstanding research works on cartilage tissue engineering, actual clinical application is not quite successful because of the absorption and progressive distortion of tissue engineered cartilage. We have developed a new method of cartilage tissue engineering comprising chondrocyte mixed Pluronic F-127 and cultured chondrocyte cell sheet which entirely cover the cell-Pluronic complex. We believe the addition of cultured chondrocyte cell sheet enhances the efficacy of chondrogenesis in vivo. Human ear cartilage piece was enzymatically dissociated and chondrocyte suspension was acquired. Chondrocytes were cultured and expanded as the routine manner. Cultured chondrocytes were plated in high-density monolayer and cultured with Chondrogenic media in 5% CO2 incubator. After 3 weeks of culture, chondrocyte cell sheet was formed and complete single sheet of chondrocyte could be harvested by gentle manipulation of culture plate with a cell scraper. Chondrocyte-Pluronic complex was established by mixing 1x 106 cells with 0.5 of Pluronic F- 127. Chondrocyte-Pluronic complex was completely covered with a sheet of cultured chondrocyte. The completed tissue engineered constructs were implanted into the subcutaneous tissue pocket of nude mice on the back. Tissue engineered constructs without cultured cell sheet were used as control. Samples were harvested at 8 weeks postoperatively and they were subjected to histological analysis and assayed for glycosaminoglycan (GAG), and type II collagen. Grossly, the size of cartilage specimen of cultured chondrocyte cell sheet covered group was larger than that of the control. On histologic examination, the specimen of cultured chondrocyte cell sheet covered group showed lacunae-containing cells embedded in a basophilic matrix. The chondrocyte cell sheet covered group specimen resembled mature or immature cartilage. The result of measurement of GAG and type II collagen of cartilage specimen of cultured chondrocyte sheet covered group was higher than that of the control. In conclusion, the new method of cartilage tissue engineering using chondrocyte cell sheet seems to be an effective method providing higher cartilage tissue gain and reliable success rate for cartilage tissue engineering.


2013 ◽  
Vol 21 (3) ◽  
pp. 481-490 ◽  
Author(s):  
H.J. Pulkkinen ◽  
V. Tiitu ◽  
P. Valonen ◽  
J.S. Jurvelin ◽  
L. Rieppo ◽  
...  

2008 ◽  
Vol 31 (11) ◽  
pp. 960-969 ◽  
Author(s):  
H.J. Pulkkinen ◽  
V. Tiitu ◽  
P. Valonen ◽  
E.-R. Hämäläinen ◽  
M.J. Lammi ◽  
...  

Purpose Collagen type II is the major component of cartilage and would be an optimal scaffold material for reconstruction of injured cartilage tissue. In this study, the feasibility of recombinant human type II collagen gel as a 3-dimensional culture system for bovine chondrocytes was evaluated in vitro. Methods Bovine chondrocytes (4x106 cells) were seeded within collagen gels and cultivated for up to 4 weeks. The gels were investigated with confocal microscopy, histology, and biochemical assays. Results Confocal microscopy revealed that the cells maintained their viability during the entire cultivation period. The chondrocytes were evenly distributed inside the gels, and the number of cells and the amount of the extracellular matrix increased during cultivation. The chondrocytes maintained their round phenotype during the 4-week cultivation period. The glycosaminoglycan levels of the tissue increased during the experiment. The relative levels of aggrecan and type II collagen mRNA measured with realtime polymerase chain reaction (PCR) showed an increase at 1 week. Conclusion Our results imply that recombinant human type II collagen is a promising biomaterial for cartilage tissue engineering, allowing homogeneous distribution in the gel and biosynthesis of extracellular matrix components.


Sign in / Sign up

Export Citation Format

Share Document