calcified cartilage
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 51)

H-INDEX

32
(FIVE YEARS 4)

2022 ◽  
Vol 36 (2) ◽  
Author(s):  
Xiwei Fan ◽  
Xiaoxin Wu ◽  
Lucas Trevisan Franca De Lima ◽  
Samantha Stehbens ◽  
Chamindie Punyadeera ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Gundula Rösch ◽  
Dominique Muschter ◽  
Shahed Taheri ◽  
Karima El Bagdadi ◽  
Christoph Dorn ◽  
...  

PurposeRecent studies demonstrated a contribution of adrenoceptors (ARs) to osteoarthritis (OA) pathogenesis. Several AR subtypes are expressed in joint tissues and the β2-AR subtype seems to play a major role during OA progression. However, the importance of β2-AR has not yet been investigated in knee OA. Therefore, we examined the development of knee OA in β2-AR-deficient (Adrb2-/-) mice after surgical OA induction.MethodsOA was induced by destabilization of the medial meniscus (DMM) in male wildtype (WT) and Adrb2-/- mice. Cartilage degeneration and synovial inflammation were evaluated by histological scoring. Subchondral bone remodeling was analyzed using micro-CT. Osteoblast (alkaline phosphatase - ALP) and osteoclast (cathepsin K - CatK) activity were analyzed by immunostainings. To evaluate β2-AR deficiency-associated effects, body weight, sympathetic tone (splenic norepinephrine (NE) via HPLC) and serum leptin levels (ELISA) were determined. Expression of the second major AR, the α2-AR, was analyzed in joint tissues by immunostaining.ResultsWT and Adrb2-/- DMM mice developed comparable changes in cartilage degeneration and synovial inflammation. Adrb2-/- DMM mice displayed elevated calcified cartilage and subchondral bone plate thickness as well as increased epiphyseal BV/TV compared to WTs, while there were no significant differences in Sham animals. In the subchondral bone of Adrb2-/- mice, osteoblasts activity increased and osteoclast activity deceased. Adrb2-/- mice had significantly higher body weight and fat mass compared to WT mice. Serum leptin levels increased in Adrb2-/- DMM compared to WT DMM without any difference between the respective Shams. There was no difference in the development of meniscal ossicles and osteophytes or in the subarticular trabecular microstructure between Adrb2-/- and WT DMM as well as Adrb2-/- and WT Sham mice. Number of α2-AR-positive cells was lower in Adrb2-/- than in WT mice in all analyzed tissues and decreased in both Adrb2-/- and WT over time.ConclusionWe propose that the increased bone mass in Adrb2-/- DMM mice was not only due to β2-AR deficiency but to a synergistic effect of OA and elevated leptin concentrations. Taken together, β2-AR plays a major role in OA-related subchondral bone remodeling and is thus an attractive target for the exploration of novel therapeutic avenues.


2021 ◽  
Vol 22 (22) ◽  
pp. 12420
Author(s):  
Stephanie E. Doyle ◽  
Finn Snow ◽  
Serena Duchi ◽  
Cathal D. O’Connell ◽  
Carmine Onofrillo ◽  
...  

Osteochondral (OC) defects are debilitating joint injuries characterized by the loss of full thickness articular cartilage along with the underlying calcified cartilage through to the subchondral bone. While current surgical treatments can provide some relief from pain, none can fully repair all the components of the OC unit and restore its native function. Engineering OC tissue is challenging due to the presence of the three distinct tissue regions. Recent advances in additive manufacturing provide unprecedented control over the internal microstructure of bioscaffolds, the patterning of growth factors and the encapsulation of potentially regenerative cells. These developments are ushering in a new paradigm of ‘multiphasic’ scaffold designs in which the optimal micro-environment for each tissue region is individually crafted. Although the adoption of these techniques provides new opportunities in OC research, it also introduces challenges, such as creating tissue interfaces, integrating multiple fabrication techniques and co-culturing different cells within the same construct. This review captures the considerations and capabilities in developing 3D printed OC scaffolds, including materials, fabrication techniques, mechanical function, biological components and design.


2021 ◽  
Vol 17 ◽  
Author(s):  
Luigi Molfetta ◽  
Andrea Casabella ◽  
Sergio Rosini ◽  
Gianantonio Saviola ◽  
Andrea Palermo

: Osteoarthritis (OA) is a chronic disease characterized by inflammation and progressive deterioration of the joint. The etiology of OA includes genetic, phlogistic, dismetabolic and mechanical factors. Historically, cartilage was considered the target of the disease and therapy was aimed at protecting and lubricating the articular cartilage. The osteochondral unit is composed of articular cartilage, calcified cartilage, and subchondral and trabecular bone, which work synergistically to support the functional loading of the joint. Numerous studies today show that OA involves the osteochondral unit, with the participation therefore of the bone in the starting and progression of the disease, which is associated with chondropathy. Cytokines involved in the process leading to cartilage damage are also mediators of subchondral bone edema. Therefore, OA therapy must be based on the use of painkillers and bisphosphonates for both the control of osteometabolic damage and its analgesic activity. Monitoring of the disease of the osteochondral unit must be extensive, since bone marrow edema can be considered as a marker of the evolution of OA. In the present review we discuss some of the pathogenetic mechanisms associated with osteoarthritis, with particular focus on the osteochondral unit and the use of clodronate.


2021 ◽  
Vol 9 ◽  
Author(s):  
Alida M. Bailleul ◽  
Zhonghe Zhou

Calcified cartilage is a vertebrate tissue that has unique characteristics, such as a high percentage of calcification, avascularity and cells with apparently delayed autolytic processes after death. All of these factors suggest that fossilized cartilage may be favorable to exceptional cellular preservation, but little is known about chondrocyte fossilization overall in vertebrate paleontology. To further understand the spectrum of cellular preservation in this tissue, we analyze the morphology and the chemistry of some intralacunar content seen in previously published avian cartilage from the Early Cretaceous Jehol biota (in Yanornis and Confuciusornis). For this, we combine standard paleohistology with Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). To better identify some fossilized structures, we compare them with experimentally decayed and biofilm-invaded avian cartilage. Histological images of the cartilage of Yanornis show structures that resemble cell nuclei within chondrocyte lacunae. An SEM analysis on this cartilage shows that some lacunae are filled with a type of in vivo mineralization (similar to micropetrotic lacunae) and others are filled with small and spherical silicified cells surrounded by an amorphous carbonaceous material. These silicified cells apparently underwent postmortem cell shrinkage and do not constitute cell nuclei. Confuciusornis shows filamentous, non-spherical cells that are mostly made of silicon and carbon. This cell morphology does not resemble that of typical healthy chondrocytes, but based on comparison with decaying, biofilm-infiltrated chondrocyte lacunae from extant material, the most plausible conclusion is that the cells of Confuciusornis were partially autolyzed prior to their mineralization. In Yanornis and Confuciusornis respectively, silicification and alumino-silicification were responsible for chondrocyte preservation; while alumino-silicification and ironization occurred in their soft tissues. This shows that alumino-silicification is quite a common mechanism of cellular and soft-tissue preservation in the Jehol biota. Moreover, the two different chondrocyte morphologies (spherical and filamentous) apparently reflect two taphonomical histories, including different timings of postmortem permineralization (one rapid and one much more delayed). This type of analysis paired with more actuotaphonomy experiments will be needed in the future to better understand the preservation potential of chondrocytes and other cell types in the fossil record.


2021 ◽  
Author(s):  
Mikko A.J. Finnilä ◽  
Shuvashis Das Gupta ◽  
Mikael J. Turunen ◽  
Iida Kestilä ◽  
Aleksandra Turkiewicz ◽  
...  

Osteoarthritis (OA) is the most common joint disease globally. In OA, articular cartilage degradation is often accompanied with sclerosis of the subchondral bone. However, the association between OA and tissue mineralization at the nanostructural level is currently not understood. Especially, it is technically challenging to identify calcified cartilage, where relevant but poorly understood pathological processes like tidemark multiplication and advancement occur. Here, we used state-of-the art micro-focus small-angle X-ray scattering with high 5μm spatial resolution to determine mineral crystal thickness in human subchondral bone and calcified cartilage. Specimens with a wide spectrum of OA severities were acquired from the medial and lateral compartments of medial compartment knee OA patients (n=15) and cadaver knees (n=10). For the first time, we identified a well-defined layer of calcified cartilage associated with pathological tidemark multiplication, containing 0.32nm thicker crystals compared to the rest of calcified cartilage. In addition, we found 0.2nm thicker mineral crystals in both tissues of the lateral compartment in OA compared with healthy knees, indicating a loading-related disease process since the lateral compartment is typically less loaded in medial compartment knee OA. Furthermore, the crystal thickness of the subchondral bone was lower with increasing histopathological OA severity. In summary, we report novel changes in mineral crystal thickness during OA. Our data suggest that unloading in the knee is associated with the growth of mineral crystals, which is especially evident in the calcified cartilage. In the subchondral bone, mineral crystals become thinner with increasing OA severity, which indicates new bone formation with sclerosis.


Author(s):  
Alan Boyde

AbstractThis review describes results obtained with tissue from prior studies of equine and human osteoarthritis (OA). The main methods considered are scanning electron microscopy, novel methods in light microscopy and X-ray Micro-tomography. The same samples have been re-utilised in several ways. The tissues described are hyaline articular cartilage (HAC; or substitutes), with its deep layer, articular calcified cartilage (ACC), whose deep surface is resorbed in cutting cone events to allow the deposition of subchondral bone (SCB). Multiple tidemarks are normal. Turnover at the osteochondral (ACC-HAC-SCB) junction is downregulated by overload exercise, conversely, during rest periods. Consequent lack of support predisposes to microfracture of the ACC-SCB plate, in the resorption-related repair phase of which the plate is further undermined to form sink holes. The following characteristics contribute to the OA scenario: penetrating resorption canals and local loss of ACC; cracking of ACC and SCB; sealing of cracks with High-Density Mineral Infill (HDMI); extrusion of HDMI into HAC to form High-Density Mineral Protrusions (HDMP) in HAC which may fragment and contribute to its destruction; SCB marrow space infilling and densification with (at first) woven bone; disruption, fibrillation and loss of HAC; eburnation; repair with abnormal tissues including fibrocartilage and woven bone; attachment of Sharpey fibres to SCB trabeculae and adipocyte-moulded extensions to trabeculae (excrescences).


2021 ◽  
pp. 036354652110071
Author(s):  
Yang Huang ◽  
Huaquan Fan ◽  
Xiaoyuan Gong ◽  
Liu Yang ◽  
Fuyou Wang

Background: Long-term outcomes of current clinical interventions for osteochondral defect are less than satisfactory. One possible reason is an ignorance of the interface structure between cartilage and subchondral bone, the calcified cartilage zone (CCZ). However, the importance of natural CCZ in osteochondral defects has not been directly described. Purpose: To explore the feasibility of fabricating trilayer scaffold containing natural CCZ for osteochondral defects and the role of CCZ in the repair process. Study Design: Controlled laboratory study. Methods: The scaffold was prepared by cross-linking lyophilized type II collagen sponge and acellular normal pig subchondral bone with or without natural CCZ. Autologous bone marrow stem cells (BMSCs) of minipig were mixed with type II collagen gel and injected into the cartilage layer of the scaffold before operation. Thirty minipigs were randomly divided into CCZ (n = 10), non-CCZ (n = 10), and blank control (n = 10) groups. An 8 mm–diameter full-thickness osteochondral defect was created on the trochlear surface, and scaffold containing BMSCs was transplanted into the defect according to grouping requirements. At 12 and 24 weeks postoperatively, specimens were assessed by macroscopic observation, magnetic resonance imaging examination, and histological observations (hematoxylin and eosin, Safranin O–fast green, type II collagen immunohistochemical, and Sirius red staining). Semiquantitative cartilage repair scoring was conducted using the MOCART (Magnetic Resonance Observation of Cartilage Repair Tissue) system and the O’Driscoll repaired cartilage value system. Results: The defects in the blank control and non-CCZ groups were filled with fibrous tissue, while the cartilage layer of the CCZ group was mainly repaired by hyaline cartilage at 24 weeks postoperatively. The superior repair outcome of the CCZ group was confirmed by MOCART and O’Driscoll score. Conclusion: The trilayer scaffold containing natural CCZ obtained the best repair effect compared with the non-CCZ scaffold and the blank control, indicating the importance of the CCZ in osteochondral tissue engineering. Clinical Relevance: This study demonstrates the necessity to reconstruct CCZ in clinical osteochondral defect repair and provides a possible strategy for osteochondral tissue engineering.


2021 ◽  
Vol 9 ◽  
Author(s):  
Qian Wu ◽  
Alida M. Bailleul ◽  
Zhiheng Li ◽  
Jingmai O’Connor ◽  
Zhonghe Zhou

As key components of the tetrapod pectoral girdle, the scapula and coracoid have played a significant role in the evolution of forelimb locomotion among terrestrial vertebrates. The transition from a rigid fused scapulocoracoid in ancestral non-avian theropods to a presumably more flexible separated scapula-coracoid in early birds is considered to be one of the key morphological transitions related to the rapid refinement of flight. In most Mesozoic birds (e.g., Enantiornithes and Ornithuromorpha) and crown birds the scapula and coracoid are separate (unfused), with few exceptions (e.g., flightless paleognaths). In contrast, in Confuciusornis, a basal pygostylian from the Early Cretaceous Jehol Biota known from thousands of specimens, the scapula and coracoid remain plesiomorphically fused. This raises questions regarding the influence of shoulder girdle architecture on the early evolution and refinement of avian flight. The paravian scapula-coracoid joint has never previously been investigated using histology, and thus joint morphology has only been inferred superficially. In order to better understand the evolution of this joint in Mesozoic birds, we make the first histological study of the scapulocoracoid glenoid joint in Confuciusornis. The results demonstrate that the scapula and coracoid both consist of cancellous and compact bone, with both fibrolamellar and parallel-fibered structure. A thin layer of calcified cartilage is present on the glenoid fossa surface, representing remnants of the articular surface for the humerus. Both histology and computed tomography reveal that the scapulocoracoid of Confuciusornis is fully fused, forming a synostosis. Humeral histology suggests the studied individual was nearing completion of its first year of growth, suggesting the Confuciusornis scapulocoracoid fused before skeletal maturity was achieved, as in flightless paleognaths, whereas in the plesiomorphic condition fusion occurs late in ontogeny. We hypothesize the fused scapulocoracoid of Confuciusornis is secondarily evolved and suggest the primary factor responsible for this morphology may have been a decrease in mechanical stimulation at the glenoid of Confuciusornis relative to other volant birds, linked to the unique flight style of this taxon. Further investigation into the histology of the glenoid joint in other Mesozoic paravians and extant birds will help to clarify the morphological transition of the scapula-coracoid joint in early avian evolution.


Sign in / Sign up

Export Citation Format

Share Document