Peptidyl Antithrombogenic Agents for Extracorporeal Blood Circulation

1992 ◽  
Vol 15 (12) ◽  
pp. 737-745
Author(s):  
S. Ito ◽  
T. Matsuda ◽  
Y. Takemoto ◽  
K. Yamamoto ◽  
T. Kishimoto ◽  
...  

The reduction of platelet aggregation and adhesion is essential for preventing thrombus formation during extracorporeal circulation. This report addresses some performances of peptidyl antithrombogenic agents which bind to the adhesive site of fibrinogen. This was based on the recent finding that the sequence of the binding domain of the platelet membrane receptor to fibrinogen was identified as TDVNGDGRHDL (one-letter amino acid code; Thr-Asp-Val-Asn-Gly-Asp-Gly-Arg-His-Asp-Leu), entitled B12. The addition of B12 and shorter-chain analogue peptides dose-dependently suppressed platelet aggregation and adhesion onto a fibrinogen-coated surface. The shorter the amino acid sequence, the less effective was inhibition. The inhibitory effect on platelet adhesion in vivo was significant under continuous infusion of B12. These inhibitory effects were compared with those by a receptor-binding RGD (Arg-Gly-Asp) peptide, which is the common active site to adhesive proteins.

1998 ◽  
Vol 79 (01) ◽  
pp. 222-227 ◽  
Author(s):  
F. Stockmans ◽  
W. Deberdt ◽  
Å. Nyström ◽  
E. Nyström ◽  
J. M. Stassen ◽  
...  

SummaryIntravenous administration of piracetam to hamsters reduced the formation of a platelet-rich venous thrombus induced by a standardised crush injury, in a dose-dependent fashion with an IC50 of 68 ± 8 mg/kg. 200 mg/kg piracetam also significantly reduced in vivo thrombus formation in rats. However, in vitro aggregation of rat platelets was only inhibited with piracetam-concentrations at least 10-fold higher than plasma concentrations (6.2 ± 1.1 mM) obtained in the treated animals. No effects were seen on clotting tests.In vitro human platelet aggregation, induced by a variety of agonists, was inhibited by piracetam, with IC50’s of 25-60 mM. The broad inhibition spectrum could be explained by the capacity of piracetam to prevent fibrinogen binding to activated human platelets. Ex vivo aggregations and bleeding times were only minimally affected after administration of 400 mg/kg piracetam i.v. to healthy male volunteers, resulting in peak plasma levels of 5.8 ± 0.3 mM.A possible antiplatelet effect of piracetam could be due to the documented beneficial effect on red blood cell deformability leading to a putative reduction of ADP release by damaged erythrocytes. However similarly high concentrations were needed to prevent stirring-induced “spontaneous” platelet aggregation in human whole blood.It is concluded that the observed antithrombotic action of piracetam cannot satisfactorily be explained by an isolated direct effect on platelets. An additional influence of piracetam on the rheology of the circulating blood and/or on the vessel wall itself must therefore be taken into consideration.


1979 ◽  
Author(s):  
J. Lansen ◽  
G. Biagi ◽  
P. Niebes ◽  
J. Gordon ◽  
R. Roncucci

Recent findings have suggested that the in vivo balance between the biosynthesis of proaggregating substances by blood platelets (e.g. thromboxane A2, endoperoxides) and antiaggregating substances produced by the vessel wall (PGI2) might be critical for thrombus formation. We therefore investigated the effect of suloctidil (S), indomethacin (I), acetylsalicylic acid (ASA) and tranylcypromine (T) on these parameters. Male Sprague-Dawley rats (200-300 g) fasted for 12 h were given a single i.v. dose (0.5 and 1 mg/kg) of S (glucuronate salt) or 200 mg/kg of the other compounds. Ten min after the injection, rats were killed and segments of the abdominal aorta and inferior vena cava were excised. PGI2 production by these segments vascular tissue was assessed by platelet aggregation inhibitory activity. PGI2 production was almost completely inhibited by ASA, I and T whereas S enhanced the production (or possibly the effect) of PGI2-like activity. The effect of S was dose dependent and was statistically significant at 1 mg/kg. In vitro studies showed that 100 μM S potentiated the inhibitory effect of synthetic PGI2 on platelet aggregation.


1994 ◽  
Vol 71 (01) ◽  
pp. 095-102 ◽  
Author(s):  
Désiré Collen ◽  
Hua Rong Lu ◽  
Jean-Marie Stassen ◽  
Ingrid Vreys ◽  
Tsunehiro Yasuda ◽  
...  

SummaryCyclic Arg-Gly-Asp (RGD) containing synthetic peptides such as L-cysteine, N-(mercaptoacetyl)-D-tyrosyl-L-arginylglycyl-L-a-aspartyl-cyclic (1→5)-sulfide, 5-oxide (G4120) and acetyl-L-cysteinyl-L-asparaginyl-L-prolyl-L-arginyl-glycyl-L-α-aspartyl-[0-methyltyrosyl]-L-arginyl-L-cysteinamide, cyclic 1→9-sulfide (TP9201) bind with high affinity to the platelet GPIIb/IIIa receptor.The relationship between antithrombotic effect, ex vivo platelet aggregation and bleeding time prolongation with both agents was studied in hamsters with a standardized femoral vein endothelial cell injury predisposing to platelet-rich mural thrombosis, and in dogs with a carotid arterial eversion graft inserted in the femoral artery. Intravenous administration of G4120 in hamsters inhibited in vivo thrombus formation with a 50% inhibitory bolus dose (ID50) of approximately 20 μg/kg, ex vivo ADP-induccd platelet aggregation with ID50 of 10 μg/kg, and bolus injection of 1 mg/kg prolonged the bleeding time from 38 ± 9 to 1,100 ± 330 s. Administration of TP9201 in hamsters inhibited in vivo thrombus formation with ID50 of 30 μg/kg, ex vivo platelet aggregation with an ID50 of 50 μg/kg and bolus injection of 1 mg/kg did not prolong the template bleeding time. In the dog eversion graft model, infusion of 100 μg/kg of G4120 over 60 min did not fully inhibit platelet-mediated thrombotic occlusion but was associated with inhibition of ADP-induccd ex vivo platelet aggregation and with prolongation of the template bleeding time from 1.3 ± 0.4 to 12 ± 2 min. Infusion of 300 μg/kg of TP9201 over 60 min completely prevented thrombotic occlusion, inhibited ex vivo platelet aggregation, but was not associated with prolongation of the template bleeding time.TP9201, unlike G4120, inhibits in vivo platelet-mediated thrombus formation without associated prolongation of the template bleeding time.


1974 ◽  
Vol 32 (02/03) ◽  
pp. 417-431 ◽  
Author(s):  
A. du P Heyns ◽  
D. J van den Berg ◽  
G. M Potgieter ◽  
F. P Retief

SummaryThe platelet aggregating activity of extracts of different layers of the arterial wall was compared to that of Achilles tendon. Arterial media and tendon extracts, adjusted to equivalent protein content as an index of concentration, aggregated platelets to the same extent but an arterial intima extract did not aggregate platelets. Platelet aggregation induced by collagen could be inhibited by mixing with intima extract, but only to a maximum of about 80%. Pre-mixing adenosine diphosphate (ADP) with intima extracts diminished the platelet aggregation activity of the ADP. Depending on the relationship between ADP and intima extract concentrations aggregating activity could either be completely inhibited or inhibition abolished. Incubation of ADP with intima extract and subsequent separation of degradation products by paper chromatography, demonstrated a time-dependent breakdown of ADP with AMP, adenosine, inosine and hypoxanthine as metabolic products; ADP removal was complete. Collagen, thrombin and adrenaline aggregate platelets mainly by endogenous ADP of the release reaction. Results of experiments comparing inhibition of aggregation caused by premixing aggregating agent with intima extract, before exposure to platelets, and the sequential addition of first the intima extract and then aggregating agent to platelets, suggest that the inhibitory effect of intima extract results from ADP breakdown. It is suggested that this ADP degradation by intima extract may play a protective role in vivo by limiting the size of platelet aggregates forming at the site of minimal “wear and tear” vascular trauma.


1973 ◽  
Vol 30 (02) ◽  
pp. 315-326
Author(s):  
J. Heinz Joist ◽  
Jean-Pierre Cazenave ◽  
J. Fraser Mustard

SummarySodium pentobarbital (SPB) and three other barbituric acid derivatives were found to inhibit platelet function in vitro. SPB had no effect on the primary response to ADP of platelets in platelet-rich plasma (PRP) or washed platelets but inhibited secondary aggregation induced by ADP in human PRP. The drug inhibited both phases of aggregation induced by epinephrine. SPB suppressed aggregation and the release reaction induced by collagen or low concentrations of thrombin, and platelet adherence to collagen-coated glass tubes. The inhibition by SPB of platelet aggregation was readily reversible and isotopically labeled SPB did not become firmly bound to platelets. No inhibitory effect on platelet aggregation induced by ADP, collagen, or thrombin could be detected in PRP obtained from rabbits after induction of SPB-anesthesia.


1987 ◽  
Vol 114 (4) ◽  
pp. 470-474 ◽  
Author(s):  
G. S. G. Spencer ◽  
D. J. Hill ◽  
G. J. Garssen ◽  
J. P. G. Williams

Abstract. The effects of somatostatin on the acute metabolic actions of insulin on newborn rat myoblasts in culture has been examined during monolayer culture. Somatostatin significantly inhibited the insulin-stimulated uptake of [3H]leucine and [3H]amino-isobutyric acid into myoblasts but had no effect on basal (unstimulated) uptake of these two substances. The lowest concentration of somatostatin to have a significant effect was 10 μg/l, and this was apparent in all the experiments undertaken. The inhibitory effect of somatostatin was seen at all effective concentrations of insulin used (0.3–1 U/l). These findings lend support to the concept of an endocrine role for somatostatin in vivo and suggest that a peripheral antagonism may exist between circulating insulin and somatostatin on anabolic processes such as nutrient uptake into cells.


2018 ◽  
Vol 115 (11) ◽  
pp. 1672-1679 ◽  
Author(s):  
Qi Ma ◽  
Weilin Zhang ◽  
Chongzhuo Zhu ◽  
Junling Liu ◽  
Quan Chen

Abstract Aims AKT kinase is vital for regulating signal transduction in platelet aggregation. We previously found that mitochondrial protein FUNDC2 mediates phosphoinositide 3-kinase (PI3K)/phosphatidylinositol-3,4,5-trisphosphate (PIP3)-dependent AKT phosphorylation and regulates platelet apoptosis. The aim of this study was to evaluate the role of FUNDC2 in platelet activation and aggregation. Methods and results We demonstrated that FUNDC2 deficiency diminished platelet aggregation in response to a variety of agonists, including adenosine 5′-diphosphate (ADP), collagen, ristocetin/VWF, and thrombin. Consistently, in vivo assays of tail bleeding and thrombus formation showed that FUNDC2-knockout mice displayed deficiency in haemostasis and thrombosis. Mechanistically, FUNDC2 deficiency impairs the phosphorylation of AKT and downstream GSK-3β in a PI3K-dependent manner. Moreover, cGMP also plays an important role in FUNDC2/AKT-mediated platelet activation. This FUNDC2/AKT/GSK-3β/cGMP axis also regulates clot retraction of platelet-rich plasma. Conclusion FUNDC2 positively regulates platelet functions via AKT/GSK-3β/cGMP signalling pathways, which provides new insight for platelet-related diseases.


Blood ◽  
1998 ◽  
Vol 91 (5) ◽  
pp. 1582-1589
Author(s):  
Mei-Chi Chang ◽  
Hui-Kuan Lin ◽  
Hui-Chin Peng ◽  
Tur-Fu Huang

A potent platelet glycoprotein Ib (GPIb) antagonist, crotalin, with a molecular weight of 30 kD was purified from the snake venom ofCrotalus atrox. Crotalin specifically and dose dependently inhibited aggregation of human washed platelets induced by ristocetin with IC50 of 2.4 μg/mL (83 nmol/L). It was also active in inhibiting ristocetin-induced platelet aggregation of platelet-rich plasma (IC50, 6.3 μg/mL). 125I-crotalin bound to human platelets in a saturable and dose-dependent manner with a kd value of 3.2 ± 0.1 × 10−7 mol/L, and its binding site was estimated to be 58,632 ± 3,152 per platelet. Its binding was specifically inhibited by a monoclonal antibody, AP1 raised against platelet GPIb. Crotalin significantly prolonged the latent period in triggering platelet aggregation caused by low concentration of thrombin (0.03 U/mL), and inhibited thromboxane B2formation of platelets stimulated either by ristocetin plus von Willebrand factor (vWF), or by thrombin (0.03 U/mL). When crotalin was intravenously (IV) administered to mice at 100 to 300 μg/kg, a dose-dependent prolongation on tail bleeding time was observed. The duration of crotalin in prolonging tail bleeding time lasted for 4 hours as crotalin was given at 300 μg/kg. In addition, its in vivo antithrombotic activity was evidenced by prolonging the latent period in inducing platelet-rich thrombus formation by irradiating the mesenteric venules of the fluorescein sodium-treated mice. When administered IV at 100 to 300 μg/kg, crotalin dose dependently prolonged the time lapse in inducing platelet-rich thrombus formation. In conclusion, crotalin specifically inhibited vWF-induced platelet agglutination in the presence of ristocetin because crotalin selectively bound to platelet surface receptor-glycoprotein Ib, resulting in the blockade of the interaction of vWF with platelet membrane GPIb. In addition, crotalin is a potent antithrombotic agent because it pronouncedly blocked platelet plug formation in vivo.


Blood ◽  
1998 ◽  
Vol 91 (5) ◽  
pp. 1582-1589 ◽  
Author(s):  
Mei-Chi Chang ◽  
Hui-Kuan Lin ◽  
Hui-Chin Peng ◽  
Tur-Fu Huang

AbstractA potent platelet glycoprotein Ib (GPIb) antagonist, crotalin, with a molecular weight of 30 kD was purified from the snake venom ofCrotalus atrox. Crotalin specifically and dose dependently inhibited aggregation of human washed platelets induced by ristocetin with IC50 of 2.4 μg/mL (83 nmol/L). It was also active in inhibiting ristocetin-induced platelet aggregation of platelet-rich plasma (IC50, 6.3 μg/mL). 125I-crotalin bound to human platelets in a saturable and dose-dependent manner with a kd value of 3.2 ± 0.1 × 10−7 mol/L, and its binding site was estimated to be 58,632 ± 3,152 per platelet. Its binding was specifically inhibited by a monoclonal antibody, AP1 raised against platelet GPIb. Crotalin significantly prolonged the latent period in triggering platelet aggregation caused by low concentration of thrombin (0.03 U/mL), and inhibited thromboxane B2formation of platelets stimulated either by ristocetin plus von Willebrand factor (vWF), or by thrombin (0.03 U/mL). When crotalin was intravenously (IV) administered to mice at 100 to 300 μg/kg, a dose-dependent prolongation on tail bleeding time was observed. The duration of crotalin in prolonging tail bleeding time lasted for 4 hours as crotalin was given at 300 μg/kg. In addition, its in vivo antithrombotic activity was evidenced by prolonging the latent period in inducing platelet-rich thrombus formation by irradiating the mesenteric venules of the fluorescein sodium-treated mice. When administered IV at 100 to 300 μg/kg, crotalin dose dependently prolonged the time lapse in inducing platelet-rich thrombus formation. In conclusion, crotalin specifically inhibited vWF-induced platelet agglutination in the presence of ristocetin because crotalin selectively bound to platelet surface receptor-glycoprotein Ib, resulting in the blockade of the interaction of vWF with platelet membrane GPIb. In addition, crotalin is a potent antithrombotic agent because it pronouncedly blocked platelet plug formation in vivo.


Sign in / Sign up

Export Citation Format

Share Document