Faculty Opinions recommendation of Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo.

Author(s):  
Klaus Ley
2007 ◽  
Vol 179 (7) ◽  
pp. i19-i19
Author(s):  
Bernhard Nieswandt ◽  
Markus Moser ◽  
Irina Pleines ◽  
David Varga-Szabo ◽  
Sue Monkley ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3926-3926 ◽  
Author(s):  
Subia Tasneem ◽  
Adili Reheman ◽  
Heyu Ni ◽  
Catherine P.M. Hayward

Abstract Studies of mice with genetic deficiencies have provided important insights on the functions of many proteins in thrombosis and hemostasis. Recently, a strain of mice (C57BL/6JOlaHsd, an inbred strain of C57BL/6J) has been identified to have a spontaneous, tandem deletion of the multimerin 1 and α-synuclein genes, which are also adjacent genes on human chromosome 4q22. Multimerin 1 is an adhesive protein found in platelets and endothelial cells while α-synuclein is a protein found in the brain and in blood that is implicated in neurodegenerative diseases and exocytosis. In vitro, multimerin 1 supports platelet adhesion while α-synuclein inhibits α-granule release. We postulated that the loss of multimerin 1 and α-synuclein would alter platelet function and that recombinant human multimerin 1 might correct some of these abnormalities. We compared platelet adhesion, aggregation and thrombus formation in vitro and in vivo in C57BL/6JOlaHsd and C57BL/6 mice. Thrombus formation was studied by using the ferric-chloride injured mesenteric arteriole thrombosis model under intravital microscopy. We found that platelet adhesion, aggregation and thrombus formation in C57BL/6JOlaHsd were significantly impaired in comparison to control, C57BL/6 mice. The number of single platelets, deposited 3–5 minutes after injury, was significantly decreased in C57BL/6JOlaHsd mice (P <0.05, platelets/min: C57BL/6 = 157 ± 15, n=16; C57BL/6JOlaHsd = 77 ± 13, n=17). Moreover, thrombus formation in these mice was significantly delayed. Thrombi in C57BL/6JOlaHsd were unstable and easily dissolved, which resulted in significant delays (P<0.001) in vessel occlusion (mean occlusion times: C57BL/6 = 15.6 ± 1.2 min, n=16; C57BL/6JOlaHsd = 31.9 ± 2.1 min, n=17). We further tested platelet function in these mice by ADP and thrombin induced platelet aggregation using platelet rich plasma and gel-filtered platelets, respectively. Although no significant differences were seen with ADP aggregation, thrombin-induced platelet aggregation was significantly impaired in C57BL/6JOlaHsd mice. Platelet adhesion to type I collagen (evaluated using microcapillary chambers, perfused at 1500 s−1 with whole blood) was also impaired in C57BL/6JOlaHsd mice. However, platelets from C57BL/6JOlaHsd mice showed a normal pattern of agonist-induced release of α-granule P-selectin. Multimerin 1 corrected the in vitro aggregation and adhesion defects of C57BL/6JOlaHsd platelets. Furthermore, the transfusion of multimerin 1 into C57BL/6JOlaHsd mice corrected the impaired platelet deposition and thrombus formation in vivo. No significant difference was found in tail bleeding time between the two groups of mice. As α-synuclein knockout mice have a shortened time to thrombus formation (Circulation2007;116:II_76), the effects of multimerin 1 on impaired platelet function in C57BL/6JOlaHsd mice provide supportive evidence that multimerin 1 contributes to platelet adhesion and thrombus formation at the site of vessel injury. The findings suggest multimerin 1 knockout mice will be useful to explore platelet function. The first two authors and participating laboratories contributed equally to this study.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3361-3361
Author(s):  
Riitta Lassila ◽  
Annukka Jouppila ◽  
Ulla M Marzec ◽  
Stephen R Hanson

Abstract Abstract 3361 We have developed a semi-synthetic antithrombotic heparin complex, APL001, to mimic mast cell-derived natural heparin proteoglycans (HepPG). HepPG attenuate platelet-collagen interactions under blood flow by inhibiting VWF- and GPIIb/IIIa -mediated platelet aggregation. In addition, rat-derived HepPG arrest platelet thrombus growth on collagen surfaces or at vascular injury sites, both in vitro and in vivo (Lassila et al.ATVB 1997, Kauhanen et al. ATVB 2000, Olsson et al. Thromb Haemost 2002). Our objective was to study the inhibitory capacity of APL001 for preventing human platelet aggregation in vitro and acute thrombosis in a baboon model in vivo. The effects of unfractionated heparin (UFH) and APL001 were compared in relevant coagulation assays (APTT, PT, thrombin time, anti-FXa activity, fibrinogen, FVIII:C and VWF activity (VWF:RCo) and antigen). Additionally, agonist-induced (collagen, ristocetin and ADP) platelet aggregation in citrate or hirudin-anticoagulated whole blood (Multiplate®) (n=10 healthy subjects), and platelet function analysis (PFA100®) in citrated platelet rich plasma (PRP) were assessed. In a well-established baboon thrombosis model a collagen-coated PTFE graft (length 2 cm, lumen 4 mm) was placed in an arterio-venous shunt. Prior to blood contact the thrombogenic surface was treated for 10 min with UFH or APL001 (both at 4 mg/mL). Thrombus formation was initiated by exposing the surface to blood flow (100 mL/min, shear rate 265−1), and the deposition of 111-In-labeled platelets and of fibrin was quantified continuously over 1h. Fibrin thrombus accumulation was assessed from the incorporation of circulating 125-I-fibrinogen. In the heparin-relevant coagulation tests APL001 was comparable or 20–30% more potent than UFH while FVIII, fibrinogen and VWF variables remained unaltered. In contrast to UFH, APL001 (300 μg/mL) consistently inhibited collagen- and ristocetin-induced platelet aggregation, whereas UFH had only a modest effect in comparison with PBS control (Table). ADP-induced aggregation was unaffected. Comparable results were observed in the PRP aggregation assay. PFA100 testing also demonstrated inhibitory effects. In the in vivo thrombosis model (n=4) APL001 reduced platelet deposition on collagen (vs. the results with UFH) by 34% (p=0.01), while platelet accumulation in distal propagated thrombus was reduced by 61% (p=0.16). APL001-treated surfaces accumulated 45% less fibrin than the UFH-treated surfaces (p=0.008). In conclusion, when compared with UFH APL001 inhibited both collagen- and ristocetin-induced platelet aggregation in human blood, while anticoagulant properties were comparable. In the absence of systemic antithrombotic drugs, exposure of APL001 to a highly thrombogenic collagen surface arrested thrombus formation in an in vivo baboon model. This finding suggests that locally administered APL001 alone, due to its dual antiplatelet and anticoagulant effects, may limit the growth and size of thrombus and thereby prevent subsequent thrombo-occlusion.TableAnticoagulantInhibition-% of platelet aggregation ± SDConc. 300 μg/mLnColl (3.2 μg/mL)Ristocetin (0.77 mg/mL)ADP (6.4 μM)CitrateAPL0011033 ± 1543 ± 166 ± 24UFH1011 ± 1323 ± 153 ± 7p value0.0030.0100.700HirudinAPL0011032 ± 1043 ± 178 ± 10UFH108 ± 1116 ± 166 ± 9p value0.0000.0020.600 Disclosures: Lassila: Aplagon: Chief Scientific Advisor.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2296-2296
Author(s):  
Gilbert Acevedo ◽  
Brian R. Branchford ◽  
Christine Brzezinski ◽  
Susan Sather ◽  
Gary Brodsky ◽  
...  

Abstract Background Growth Arrest Specific gene 6 (Gas6) is a ligand for the Tyro3/Axl/Mer (TAM) family of receptor tyrosine kinases found on the surface of platelets. Previous studies have shown that stimulation of these receptors results in amplification of platelet activation and thrombus stabilization via activation of phosphatidylinositol-3-kinase (PI3K) and Akt, leading to phosphorylation of the β3 integrin. Previous work (from our lab and others) demonstrated that inhibition of the Gas6/TAM pathway results in impaired platelet aggregation, reduced aggregate stability, and decreased platelet spreading. Additionally, knockout mice deficient in the receptor or ligand are protected from venous and arterial thrombosis, but retain normal tail bleeding times. Here, we describe development and characterization of novel Mer-selective small molecule inhibitors (SMIs) for thrombosis applications. Objectives To determine if Mer-selective SMIs can inhibit platelet aggregation and protect mice from thrombosis using in vitro and in vivo models Methods We used aggregometry and in vivo murine models of arterial and venous thrombosis to compare two Mer-selective SMIs (UNC Mer TKI1 and UNC Mer TKI2) and determine the most effective inhibitor of platelet aggregation and thrombus formation. The inhibitory effect of two doses (1µM and 5 µM) of the compounds were determined using standard light-transmission aggregometry after a 30 minute incubation with washed human platelets at 37 ¢ªC and compared to platelets treated with vehicle control or with a TKI control (UNC TKI Null), a SMI with similar structure but minimal anti-TAM activity. Both collagen/epinephrine-induced systemic venous thrombosis and FeCl3-induced carotid artery injury models were used to determine effects on thrombosis mediated by UNC TKIs. Wild type C57Bl/6 mice were treated with one of the two inhibitors and compared to mice treated with vehicle control. Mean values +/- SEM are shown and statistical significance (p<0.05) was determined using the student’s paired t-test. Results UNC Mer TKI1 exhibited more potent inhibition of platelet aggregation in vitro relative to UNC Mer TKI2, although both compounds mediated dose-dependent effects. At a concentration of 1uM, the maximum percent aggregation in UNC Mer TKI1-treated samples (n=7) was significantly greater than samples treated with UNC TKI Null (n=7), 20% DMSO vehicle (n=7), or UNC TKI2 (n=7), with mean values of 69 +/- 2.2%, 76.7 +/-1.8% (p<0.01), 76.9 +/- 2.1% (p=0.001), and 77 +/- 1.8% (p<0.001), respectively. At a concentration of 5 µM, UNC Mer TKI1-treated samples (n=7) exhibited a mean maximum percent aggregation of 23.7 +/- 2.4% compared to 50.4 +/- 4.8% for samples treated with UNC Mer TKI2 (n=7, p<0.001). UNC Mer TKIs also mediated protection from thrombus formation in mice. Following FeCl3 injury to the carotid artery, vehicle-treated mice (n=11) developed stable vessel occlusions with a mean time of 6.77 +/- 0.25 min. In contrast, stable occlusion occurred at a mean time of 46.6 +/- 7.72 min (n=9, p=0.001) for UNC Mer TKI1-treated mice. Survival times following venous injection of collagen and epinephrine were also significantly increased in mice treated with either UNC Mer TKI relative to the UNC TKI Null or vehicle controls. Mice pre-treated with UNC Mer TKI1 (n=9, p=0.04 compared to vehicle alone) or UNC Mer TKI2 (n=9, p=0.03 compared to vehicle alone) survived for 19.84 +/- 4.4 and 21.25 +/- 4.65 minutes, respectively. In contrast, mice given UNC TKI Null (n=3) or vehicle (n=21), only survived for 3.21 +/- 2.4 min and 3.09 +/- 0.22 minutes, respectively. Conclusion UNC Mer TKIs mediate dose-dependent inhibition of platelet aggregation and protect mice from arterial and venous thrombosis. Their pronounced activity compared to an inactive scaffold protein with minimal anti-TAM activity suggest that Gas6/TAM pathway inhibition is the mechanism of action for these novel compounds. UNC Mer TKI1 has more potent anti-thrombotic properties than UNC Mer TKI2. Disclosures: Branchford: University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties. Sather:University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties. DeRyckere:University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties. Zhang:University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties. Liu:University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties. Earp:University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties. Wang:University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties. Frye:University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties. Graham:University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties. Di Paola:University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3442-3442 ◽  
Author(s):  
Reheman Adili ◽  
Theodore R Holman ◽  
Michael Holinstat

Abstract Background: Adequate platelet reactivity is required for platelet adhesion and aggregation at the site of vascular injury to maintain hemostasis. However, excessive platelet reactivity can also lead to the formation of occlusive thrombi, the predominate underlying cause of myocardial infarction and stroke. While current anti-platelet treatments limit platelet function, they often result in an increased risk of bleeding. 12-lipoxygenase (12-LOX), an oxygenase highly expressed in the platelet, has been demonstrated by our lab and others to regulate PAR4 and GPVI-mediated platelet reactivity suggesting a role of 12-LOX in regulation of vivo thrombosis. However, the ability to pharmacologically target 12-LOX in vivo has not been established to date. Aims: To determine how 12-LOX regulates thrombus formation in vivo and whether platelet 12-LOX is an effective target for anti-platelet therapeutics, wild-type (WT) or 12-LOX deficient (12-LOX-/-) mice were treated with or without the 12-LOX inhibitor, ML355, and were assessed for inhibitory effects on platelet activation in vitro, ex-vivo and in vivo. Methods: The effect of the novel 12-LOX inhibitor ML355 on human platelet function was assessed in vitro by platelet aggregometry, ex vivo by perfusion chamber. In vivo thrombus formation and vessel occlusion in small and large vessels were studied in 12-LOX-/-, WT mice and mice treated with ML355 using intravital microscopy using the FeCl3 injury models. Results: Using in vitro platelet aggregation assays, ML355 dose dependently inhibited thrombin, PAR1-AP, and PAR4-AP-induced aggregation in washed human platelets. Interestingly, the negative regulatory effects of ML355 inhibition of 12-LOX can be overcome by high concentration of thrombin. Additionally, ML355 was able to attenuate ADP-induced platelet aggregation both in platelet-rich-plasma and whole blood. In ex vivo flow chamber assays, platelet adhesion and thrombus formation on collagen-coated surfaces at high shear was attenuated in both mouse and human whole blood after incubation with ML355. Further, platelet aggregation and thrombus growth in 12-LOX-/- mice was impaired in FeCl3-induced mesenteric or carotid artery thrombosis models. Thrombi in 12-LOX-/- mice were unstable and frequently form emboli, which resulted in impaired vessel occlusion or reopening. Additionally, thrombus formation and vessel occlusion was impaired in ML355 treated WT mice. Conclusions: The highly selective 12-LOX inhibitor ML355 inhibits platelets aggregation induced by various platelet agonists and ML355 inhibition of platelet function is not agonist specific. Platelet function at high shear in ex vivo conditions in both mice and human was attenuated in the presence of ML355. Thrombus growth, stability, and vessel occlusion was impaired in mice deficient for 12-LOX. Finally, the highly selective 12-LOX inhibitor ML355 attenuates thrombus formation and prevents vessel occlusion in vivo. Our data strongly indicates 12- LOX is an important determinant of platelet reactivity and inhibition of platelet 12-LOX may represent a new target for anti-platelet therapeutics. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 115 (20) ◽  
pp. 4083-4092 ◽  
Author(s):  
Frédéric Adam ◽  
Alexandre Kauskot ◽  
Paquita Nurden ◽  
Eric Sulpice ◽  
Marc F. Hoylaerts ◽  
...  

Abstract The role of c-Jun NH2-terminal kinase 1 (JNK1) in hemostasis and thrombosis remains unclear. We show here, with JNK1-deficient (JNK1−/−) mice, that JNK1 plays an important role in platelet biology and thrombus formation. In tail-bleeding assays, JNK1−/− mice exhibited longer bleeding times than wild-type mice (396 ± 39 seconds vs 245 ± 32 seconds). We also carried out in vitro whole-blood perfusion assays on a collagen matrix under arterial shear conditions. Thrombus formation was significantly reduced for JNK1−/− platelets (51%). In an in vivo model of thrombosis induced by photochemical injury to cecum vessels, occlusion times were 4.3 times longer in JNK1−/− arterioles than in wild-type arterioles. Moreover, in vitro studies carried out in platelet aggregation conditions demonstrated that, at low doses of agonists, platelet secretion was impaired in JNK1−/− platelets, leading to altered integrin αIIbβ3 activation and reduced platelet aggregation, via a mechanism involving protein kinase C. JNK1 thus appears to be essential for platelet secretion in vitro, consistent with its role in thrombus growth in vivo. Finally, we showed that ERK2 and another isoform of JNK affect platelet aggregation through 2 pathways, one dependent and another independent of JNK1.


1978 ◽  
Vol 39 (01) ◽  
pp. 074-083 ◽  
Author(s):  
Teruhiko Umetsu ◽  
Kazuko Sanai

SummaryIn order to evaluate 1-methyl-2-mercapto-5-(3-pyridyl)-imidazole (KC-6141) as a possible antithrombotic compound, a simple and reproducible method for experimental thrombosis in rats was devised. A silken thread was inserted in the extracorporeal shunt between the carotid artery and the jugular vein. 15 min after the circulation of blood, wet weight of thrombus which developed on the thread was measured to determine the degree and rate of thrombus formation. Equalization of average body weight of rats for each group provided good reproducibility. Microscopic examination demonstrated that the thrombus was primarily composed of platelets.By use of the technique, the activities of KC-6141 and two known inhibitors, aspirin and dipyridamole, were determined. Of the three compounds, KC-6141 was the most potent inhibitor for the thrombosis. Its ED50 was 60 mg/kg when given orally and the compound was active for about 40 hr. Aspirin was about twice as less active than KC-6141 and dipyridamole showed no effect on the thrombosis.The ranking order of potency against the experimental thrombosis for the three compounds was the same as that for inhibition of platelet aggregation in vitro and platelet retention in rats, as reported previously by us. Therefore the method seems to be associated with platelet aggregation and retention.The above result suggests that KC-6141 is of value as antithrombotic drug in vivo.


1995 ◽  
Vol 73 (02) ◽  
pp. 318-323 ◽  
Author(s):  
K Azzam ◽  
L I Garfinkel ◽  
C Bal dit Sollier ◽  
M Cisse Thiam ◽  
L Drouet

SummaryTo assess the antithrombotic effectiveness of blocking the platelet glycoprotein (GP) Ib/IX receptor for von Willebrand factor (vWF), the antiaggregating and antithrombotic effects were studied in guinea pigs using a recombinant fragment of vWF, Leu 504-Lys 728 with a single intrachain disulfide bond linking residues Cys 509-Cys 695. The inhibitory effect of this peptide, named VCL, was tested in vitro on ristocetin- and botrocetin-induced platelet aggregation and compared to the ADP-induced platelet aggregation. In vivo, the antithrombotic effect of VCL was tested in a model of laser-injured mesentery small arteries and correlated to the ex vivo ristocetin-induced platelet aggregation. In this model of laser-induced thrombus formation, five mesenteric arteries were studied in each animal, and the number of recurrent thrombi during 15 min, the time to visualization and time to formation of first thrombus were recorded.In vitro, VCL totally abolished ristocetin- and botrocetin-induced platelet aggregation, but had no effect on ADP-induced platelet aggregation. Ex vivo, VCL (0.5 to 2 mg/kg) administered as a bolus i. v. injection inhibits ristocetin-induced platelet aggregation with a duration of action exceeding 1 h. The maximum inhibition was observed 5 min after injection of VCL and was dose related. The same doses of VCL had no significant effect on platelet count and bleeding time. In vivo, VCL (0.5 to 2 mg/kg) had no effect on the appearance of the thrombi formed but produced dose-dependent inhibition of the mean number of recurrent thrombi (the maximal effect was obtained at 5 min following i. v. injection of the highest dose: 0.8 ± 0.2 thrombi versus 4 ± 0.4 thrombi in controls). The three doses of VCL increased the time in which the first thrombus in a concentration-dependent manner was formed. However, the time to visualize the first thrombus was only prolonged in the higher dose-treated group.These in-vivo studies confirm that VCL induces immediate, potent, and transient antithrombotic effects. Most importantly, this inhibition was achieved without inducing thrombocytopenia nor prolongation of the bleeding time.


1998 ◽  
Vol 79 (01) ◽  
pp. 222-227 ◽  
Author(s):  
F. Stockmans ◽  
W. Deberdt ◽  
Å. Nyström ◽  
E. Nyström ◽  
J. M. Stassen ◽  
...  

SummaryIntravenous administration of piracetam to hamsters reduced the formation of a platelet-rich venous thrombus induced by a standardised crush injury, in a dose-dependent fashion with an IC50 of 68 ± 8 mg/kg. 200 mg/kg piracetam also significantly reduced in vivo thrombus formation in rats. However, in vitro aggregation of rat platelets was only inhibited with piracetam-concentrations at least 10-fold higher than plasma concentrations (6.2 ± 1.1 mM) obtained in the treated animals. No effects were seen on clotting tests.In vitro human platelet aggregation, induced by a variety of agonists, was inhibited by piracetam, with IC50’s of 25-60 mM. The broad inhibition spectrum could be explained by the capacity of piracetam to prevent fibrinogen binding to activated human platelets. Ex vivo aggregations and bleeding times were only minimally affected after administration of 400 mg/kg piracetam i.v. to healthy male volunteers, resulting in peak plasma levels of 5.8 ± 0.3 mM.A possible antiplatelet effect of piracetam could be due to the documented beneficial effect on red blood cell deformability leading to a putative reduction of ADP release by damaged erythrocytes. However similarly high concentrations were needed to prevent stirring-induced “spontaneous” platelet aggregation in human whole blood.It is concluded that the observed antithrombotic action of piracetam cannot satisfactorily be explained by an isolated direct effect on platelets. An additional influence of piracetam on the rheology of the circulating blood and/or on the vessel wall itself must therefore be taken into consideration.


Sign in / Sign up

Export Citation Format

Share Document