Do low dose CT-KUBs really expose patients to more radiation than plain abdominal radiographs?

2021 ◽  
pp. 039156032199444
Author(s):  
Bob Yang ◽  
Noorunisa Suhail ◽  
Johan Marais ◽  
James Brewin

Background: Urolithiasis patients often require frequent urinary tract imaging, leading to high radiation exposure. CT Kidney-Ureter-Bladder (CT-KUB) is the gold standard in urolithiasis detection, however it is thought to harbour significant radiation load. Urologists have therefore utilised abdominal radiographs (XR-KUB) as an alternative, though with markedly lower sensitivity and specificity. We present the first contemporary UK study comparing the effective doses of XR-KUBs with low dose CT-KUBs. Method: Fifty-three patients were retrospectively identified in a single centre who underwent both a XR-KUB and a CT-KUB in 2018. Effective-Dose was measured by converting the recorded ‘Dose Area/Length Product’ via the International Commission on Radiological Protection formula. Results: The average effective dose of XR-KUBs and low dose CT-KUBs were 5.10 mSv and 5.31 mSv respectively. Thirty-four percent (18/53) of patients had a XR-KUBs with a higher effective dose than their low dose CT-KUB. Patients with higher Weight, BMI and AP diameter had higher effective doses for both their XR and low dose CT-KUBs. All patients in our study weighing over 92 kg or with a BMI greater than 32 had a XR-KUBs with a higher effective dose than their low dose CT-KUB. Conclusion: This data supports moving away from XR-KUBs for the investigation of urolithiasis, particularly in patients with a high BMI.

2020 ◽  
Vol 49 (1_suppl) ◽  
pp. 126-140
Author(s):  
C.J. Martin

The International Commission on Radiological Protection (ICRP) developed effective dose as a quantity related to risk for occupational and public exposure. There was a need for a similar dose quantity linked to risk for making everyday decisions relating to medical procedures. Coefficients were developed to enable the calculation of doses to organs and tissues, and effective doses for procedures in nuclear medicine and radiology during the 1980s and 1990s. Effective dose has provided a valuable tool that is now used in the establishment of guidelines for patient referral and justification of procedures, choice of appropriate imaging techniques, and providing dose data on potential exposure of volunteers for research studies, all of which require the benefits from the procedure to be weighed against the risks. However, the approximations made in the derivation of effective dose are often forgotten, and the uncertainties in calculations of risks are discussed. An ICRP report on protection dose quantities has been prepared that provides more information on the application of effective dose, and concludes that effective dose can be used as an approximate measure of possible risk. A discussion of the way in which it should be used is given here, with applications for which it is considered suitable. Approaches to the evaluation of risk and methods for conveying information on risk are also discussed.


2020 ◽  
Vol 191 (2) ◽  
pp. 188-191
Author(s):  
Petr P S Otahal ◽  
Ivo Burian ◽  
Eliska Fialova ◽  
Josef Vosahlik

Abstract Measurements of activity concentration of radon gas and radon decay products were carried out in several workplaces including schools, radium spas, swimming pools, water treatment plants, caves and former mines. Based on these measurements, annual effective doses to workers were estimated and values of the equilibrium factor, F, were calculated. This paper describes the different approaches used to estimate the annual effective dose based on the dose coefficients recommended by the International Commission on Radiological Protection. Using the measured F values as opposed to the default F value of 0.4 changed the doses by about 5–95% depending mainly upon the ventilation conditions of the workplace.


2013 ◽  
Vol 27 (7) ◽  
pp. 610-617 ◽  
Author(s):  
Carlos Montes ◽  
Pilar Tamayo ◽  
Jorge Hernandez ◽  
Felipe Gomez-Caminero ◽  
Sofia García ◽  
...  

2016 ◽  
Vol 57 (4) ◽  
pp. 422-430 ◽  
Author(s):  
Masahiro Hosoda ◽  
Shinji Tokonami ◽  
Yasutaka Omori ◽  
Tetsuo Ishikawa ◽  
Kazuki Iwaoka

Abstract Due to the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, the evacuees from Namie Town still cannot reside in the town, and some continue to live in temporary housing units. In this study, the radon activity concentrations were measured at temporary housing facilities, apartments and detached houses in Fukushima Prefecture in order to estimate the annual internal exposure dose of residents. A passive radon–thoron monitor (using a CR-39) and a pulse-type ionization chamber were used to evaluate the radon activity concentration. The average radon activity concentrations at temporary housing units, including a medical clinic, apartments and detached houses, were 5, 7 and 9 Bq m −3 , respectively. Assuming the residents lived in these facilities for one year, the average annual effective doses due to indoor radon in each housing type were evaluated as 0.18, 0.22 and 0.29 mSv, respectively. The average effective doses to all residents in Fukushima Prefecture due to natural and artificial sources were estimated using the results of the indoor radon measurements and published data. The average effective dose due to natural sources for the evacuees from Namie Town was estimated to be 1.9 mSv. In comparison, for the first year after the FDNPP accident, the average effective dose for the evacuees due to artificial sources from the accident was 5.0 mSv. Although residents' internal and external exposures due to natural radionuclides cannot be avoided, it might be possible to lower external exposure due to the artificial radionuclides by changing some behaviors of residents.


Author(s):  
J. Bazoma ◽  
G. B. Dallou ◽  
P. Ondo Meye ◽  
C. Bouka Biona ◽  
Saïdou ◽  
...  

The present study aimed at estimating organ and effective doses from computed tomography (CT) scans of paediatric patients in three hospitals in Brazzaville, Congo Republic. A total of 136 data on paediatric patients, from 0.25 (3 months) to 15 years old, who underwent head, chest, abdomen – pelvis (AP) and chest – abdomen – pelvis (CAP) CT scans was considered. The approach followed in the present study to compute organ doses was to use pre-calculated volume CT dose index (CTDIvol) – and 100 milliampere-second (mAs) – normalized organ doses determined by Monte Carlo (MC) simulation. Effective dose were then derived using the international commission on radiological protection (ICRP) publications 60 and 103 formalism. For comparison purposes, effective dose were also computed using dose-length product (DLP) – to – effective dose conversion factors. A relatively high variation in organ and effective doses was observed in each age group due to the dependence of patient dose on the practice of technicians who perform the CT scan within the same facility or from one facility to another, patient size and lack of adequate training of technicians. In the particular case of head scan, the brain and the eye lens were delivered maximum absorbed doses of 991.81 mGy and 1176.51 mGy, respectively (age group 10-15 y). The maximum absorbed dose determined for the red bone marrow was 246.08 mGy (age group 1-5 y). This is of concern as leukaemia and brain tumours are the most common childhood cancers and as the ICRP recommended absorbed dose threshold for induction of cataract is largely exceeded. Effective doses derived from MC calculations and ICRP publications 60 and 103 tissues weighting factors showed a 0.40-17.61 % difference while the difference between effective doses derived by the use of k- factors and those obtained by MC calculations ranges from 0.06 to 224.87 %. The study has shown that urgent steps should be taken in order to significantly reduce doses to paediatric patients to levels observed in countries where dose reduction techniques are successfully applied.


2010 ◽  
Vol 61 (5) ◽  
pp. 258-264 ◽  
Author(s):  
Tadhg G. Gleeson ◽  
Brenda Byrne ◽  
Pat Kenny ◽  
Jason Last ◽  
Patricia Fitzpatrick ◽  
...  

Objective To study the impact of dose parameters on image quality at whole-body low-dose multidetector computed tomography (CT) in an attempt to derive parameters that allow diagnostic quality images of the skeletal system without incurring significant radiation dose in patients referred for investigation of plasma cell dyscrasias. Methods By using a single cadaver, 14 different whole-body low-dose CT protocols were individually assessed by 2 radiologists, blinded to acquisition parameters (kVp and mAs, reconstruction algorithm, dose reduction software). Combinations of kVps that range from 80-140 kVp, and tube current time product from 14–125 mAs were individually scored by using a Likert scale from 1–5 in 4 separate anatomical areas (skull base, thoracic spine, pelvis, and distal femora). Correlation between readers scores and effective doses were obtained by using correlation coefficient statistical analysis, statistical significance was considered P < .01. Interobserver agreement was assessed by using a Bland and Altman plot. Interobserver agreement in each of the 4 anatomical areas was assessed by using kappa statistics. A single set of parameters was then selected for use in future clinical trials in a cohort of patients referred for investigation of monoclonal gammopathy, including multiple myeloma. Results Several sets of exposure parameters allowed low-dose whole-body CT to be performed with effective doses similar to skeletal survey while preserving diagnostic image quality. Individual reader's and average combined scores showed a strong inverse correlation with effective dose (reader 1, r = −0.78, P = .0001; reader 2, r = −0.75, P = .0003); average combined scores r = −0.81, P < .0001). Bland and Altman plot of overall scores shows reasonable interobserver agreement, with a mean difference of 1.055. Conclusion Whole-body low-dose CT can be used to obtain adequate CT image quality to assess normal osseous detail while delivering effective doses similar to those associated with conventional radiographic skeletal survey.


2016 ◽  
Vol 21 (4) ◽  
pp. 66-72 ◽  
Author(s):  
Lillian Atsumi Simabuguro Chinem ◽  
Beatriz de Souza Vilella ◽  
Cláudia Lúcia de Pinho Maurício ◽  
Lucia Viviana Canevaro ◽  
Luiz Fernando Deluiz ◽  
...  

ABSTRACT Objective: The aim of this study was to compare the equivalent and effective doses of different digital radiographic methods (panoramic, lateral cephalometric and periapical) with cone-beam computed tomography (CBCT). Methods: Precalibrated thermoluminescent dosimeters were placed at 24 locations in an anthropomorphic phantom (Alderson Rando Phantom, Alderson Research Laboratories, New York, NY, USA), representing a medium sized adult. The following devices were tested: Heliodent Plus (Sirona Dental Systems, Bernsheim, Germany), Orthophos XG 5 (Sirona Dental Systems, Bernsheim, Germany) and i-CAT (Imaging Sciences International, Hatfield, PA, USA). The equivalent doses and effective doses were calculated considering the recommendations of the International Commission of Radiological Protection (ICRP) issued in 1990 and 2007. Results: Although the effective dose of the radiographic set corresponded to 17.5% (ICRP 1990) and 47.2% (ICRP 2007) of the CBCT dose, the equivalent doses of skin, bone surface and muscle obtained by the radiographic set were higher when compared to CBCT. However, in some areas, the radiation produced by the orthodontic set was higher due to the complete periapical examination. Conclusion: Considering the optimization principle of radiation protection, i-CAT tomography should be used only in specific and justified circumstances. Additionally, following the ALARA principle, single periapical radiographies covering restricted areas are more suitable than the complete periapical examination.


2017 ◽  
Vol 58 (10) ◽  
pp. 1276-1282 ◽  
Author(s):  
Mats Geijer ◽  
Gustav Rundgren ◽  
Lars Weber ◽  
Gunnar Flivik

2020 ◽  
Vol 9 (3) ◽  
pp. 121-123
Author(s):  
Ilham Khalid Ibrahim ◽  
Fatiheea Fatihalla Hassan ◽  
Nashwan Karkhi Abdulkareem

Background: In conventional X-ray examinations, patients are exposed to radiation. Biological hazards from radiation of any source is expressed as effective dose, and is measured in millisieverts (mSv). The purpose of this study was to assess and calculate the effective dose values for patients undergoing posteroanterior (PA) chest, abdomen, anteroposterior (AP) pelvis, and cervical spine X-ray examinations in general hospitals of Erbil city and compare it with those of other studies. Materials and Methods: A total of 255 patients between 20-70 years of age participated in this work (85 per hospital). The patients’ characteristics included age, sex, examination type, projection posture, and exposure parameters captured by NOMEX Multimeter including tube potential and current-time product. The mean effective doses (EDs) of four different examinations (chest (PA), pelvis (AP), abdomen, and cervical spine) were measured using the Monte Carlo method and compared with those of other studies. Results: The mean EDs were calculated 1.04, 2.01, 3.12, and 3.22 mSv for chest (PA), pelvis (AP), abdomen, and cervical spine, respectively. All ED values in this study were higher than those of published studies. The aim of the study was to increase the awareness of the radiographer and patients undergoing conventional X-ray diagnostic radiology on the risk of ionizing radiation for radiological protection in Erbil hospitals. Conclusion: The mean EDs were increased by an increase in the age; this may increase the probability of cancer incidence and heritable diseases. Hence, dose optimization is required due to more probable incidence of cancer when compared to other studies.


Sign in / Sign up

Export Citation Format

Share Document