Thermochemical erosion and thermophysical properties of phenolic resin/carbon fiber/graphite nanocomposites

2016 ◽  
Vol 35 (24) ◽  
pp. 1814-1825 ◽  
Author(s):  
Samire Sabagh ◽  
Ahmad Arefazar ◽  
Ahmad Reza Bahramian

The main objective of this work is an experimental investigation and an analytical modeling of ablation and to analyze the thermophysical properties of nanocomposites based on novolac resin/short carbon fiber/graphite nanocrystalline powders in oxyacetylene flame test. The composite consisting of 40 wt.% carbon fiber was prepared as reference sample of which matrix was modified with three different percentages (6, 9 and 12 wt.%) of nano-sized graphite powders as reinforcement. Ablation is calculated by mass balance equation. Some parameters in the ablation modeling are evaluated by simultaneous thermal gravimetric analysis technique. Results of this work show that ablation rates decrease by the addition of graphite powders. The theoretical ablation rates are 33–38% less than the experimental data analyzed by oxyacetylene flame tests. This difference is reasonable because the effect of fluid stream force of oxyacetylene flame that causes the thermomechanical erosion of the surface is omitted in theoretical calculations. Therefore the model only calculates thermochemical erosion. Also, the thermophysical properties change due to heating is analyzed. Moreover, in nanocomposite with 9 wt.% graphite nanopowders, the rate of ablation and thermal diffusivity coefficient decreased by 10% and 50%, respectively, and thermal stability increased by 12% compared to the reference sample.

2008 ◽  
Vol 368-372 ◽  
pp. 1753-1755 ◽  
Author(s):  
Fei Yu Yang ◽  
Xing Hong Zhang ◽  
Shan Yi Du

The oxidation behavior of ZrB2-20 vol.% SiC (ZS) and ZrB2-20 vol.% SiC containing 20 vol.% short carbon fiber (ZSC) was studied using thermal gravimetric analysis and oxyacetylene torch test. It was shown that weight gains changed from 3.71 wt.% for ZS to 4.57 wt.% for ZSC after heating 10°C /min to 1450°C in air. A thin layer of Si-rich glass and then a depletion layer of SiC was found on the cross section of both materials and carbon fiber of ZSC exposed in air was oxidized. Under oxyacetylene, an average mass loss of 0.8 wt.% for ZS and 0.9 wt.% for ZSC was measured after 180 seconds. After exposure, an oxidized layer with the formation of ZrO2 and SiO2 was found on the surface of both materials. Meanwhile, fiber in the surface of ZSC appeared oxidized and removed.


Author(s):  
Valerio Di Pompeo ◽  
Archimede Forcellese ◽  
Tommaso Mancia ◽  
Michela Simoncini ◽  
Alessio Vita

AbstractThe present paper aims at studying the effect of geometric parameters and moisture content on the mechanical performances of 3D-printed isogrid structures in short carbon fiber-reinforced polyamide (namely Carbon PA). Four different geometric isogrid configurations were manufactured, both in the undried and dried condition. The dried isogrid structures were obtained by removing the moisture from the samples through a heating at 120 °C for 4 h. To measure the quantity of removed moisture, samples were weighted before and after the drying process. Tensile tests on standard specimens and buckling tests on isogrid panels were performed. Undried samples were tested immediately after 3D printing. It was observed that the dried samples are characterized by both Young modulus and ultimate tensile strength values higher than those provided by the undried samples. Similar results were obtained by the compression tests since, for a given geometric isogrid configuration, an increase in the maximum load of the dried structure was detected as compared to the undried one. Such discrepancy tends to increase as the structure with the lowest thickness value investigated is considered. Finally, scanning electron microscopy was carried out in order to analyze the fractured samples and to obtain high magnification three-dimensional topography of fractured surfaces after testing.


Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 300
Author(s):  
Md. Safiuddin ◽  
George Abdel-Sayed ◽  
Nataliya Hearn

This paper presents the water absorption and strength properties of short carbon fiber reinforced mortar (CFRM) composite. Four CFRM composites with 1%, 2%, 3%, and 4% short pitch-based carbon fibers were produced in this study. Normal Portland cement mortar (NCPM) was also prepared for use as the control mortar. The freshly mixed mortar composites were tested for workability, wet density, and entrapped air content. In addition, the hardened mortar composites were examined for compressive strength, splitting tensile strength, flexural strength, and water absorption at the ages of 7 and 28 days. The effects of different carbon fiber contents on the tested properties were observed. Test results showed that the incorporation of carbon fibers decreased the workability and wet density, but increased the entrapped air content in mortar composite. Most interestingly, the compressive strength of CFRM composite increased up to 3% carbon fiber content and then it declined significantly for 4% fiber content, depending on the workability and compaction of the mortar. In contrast, the splitting tensile strength and flexural strength of the CFRM composite increased for all fiber contents due to the greater cracking resistance and improved bond strength of the carbon fibers in the mortar. The presence of short pitch-based carbon fibers significantly strengthened the mortar by bridging the microcracks, resisting the propagation of these minute cracks, and impeding the growth of macrocracks. Furthermore, the water absorption of CFRM composite decreased up to 3% carbon fiber content and then it increased substantially for 4% fiber content, depending on the entrapped air content of the mortar. The overall test results suggest that the mortar with 3% carbon fibers is the optimum CFRM composite based on the tested properties.


Sign in / Sign up

Export Citation Format

Share Document