scholarly journals Absorption and Strength Properties of Short Carbon Fiber Reinforced Mortar Composite

Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 300
Author(s):  
Md. Safiuddin ◽  
George Abdel-Sayed ◽  
Nataliya Hearn

This paper presents the water absorption and strength properties of short carbon fiber reinforced mortar (CFRM) composite. Four CFRM composites with 1%, 2%, 3%, and 4% short pitch-based carbon fibers were produced in this study. Normal Portland cement mortar (NCPM) was also prepared for use as the control mortar. The freshly mixed mortar composites were tested for workability, wet density, and entrapped air content. In addition, the hardened mortar composites were examined for compressive strength, splitting tensile strength, flexural strength, and water absorption at the ages of 7 and 28 days. The effects of different carbon fiber contents on the tested properties were observed. Test results showed that the incorporation of carbon fibers decreased the workability and wet density, but increased the entrapped air content in mortar composite. Most interestingly, the compressive strength of CFRM composite increased up to 3% carbon fiber content and then it declined significantly for 4% fiber content, depending on the workability and compaction of the mortar. In contrast, the splitting tensile strength and flexural strength of the CFRM composite increased for all fiber contents due to the greater cracking resistance and improved bond strength of the carbon fibers in the mortar. The presence of short pitch-based carbon fibers significantly strengthened the mortar by bridging the microcracks, resisting the propagation of these minute cracks, and impeding the growth of macrocracks. Furthermore, the water absorption of CFRM composite decreased up to 3% carbon fiber content and then it increased substantially for 4% fiber content, depending on the entrapped air content of the mortar. The overall test results suggest that the mortar with 3% carbon fibers is the optimum CFRM composite based on the tested properties.

2020 ◽  
Vol 18 (11) ◽  
pp. 801-805
Author(s):  
Kyung-Soo Jeon ◽  
R. Nirmala ◽  
Seong-Hwa Hong ◽  
Yong-II Chung ◽  
R. Navamathavan ◽  
...  

This manuscript is dealt with the synthesis of short carbon fibers reinforced polycarbonate polymer composite by using injection modeling technique. Four different composite materials were obtained by varying the carbon fibers weight percentage of 10, 20, 30 and 40%. The synthesized carbon fibers/polycarbonate composites were characterized for their morphological, mechanical and thermal properties by means of scanning electron microscopy (SEM), universal testing machine (UTM) and IZOD strength test. The resultant carbon fibers/polycarbonate composites exhibited excellent interfacial adhesion between carbon fibers and polycarbonate resin. The tensile properties were observed to be monotonically increases with increasing carbon fiber content in the composite resin. The tensile strength of carbon fiber/polycarbonate composites with the carbon fiber content 40% were increased about 8 times than that of the pristine polycarbonate matrix. The carbon fibers/polycarbonate composites with 40 wt.% of short carbon fibers exhibited a high tensile strength and thermal conductivity. The incorporation of carbon fiber in to polycarbonate resin resulted in a significant enhancement in the mechanical and the thermal behavior. These studies suggested that the short carbon fiber incorporated polycarbonate composite matrix is a good candidate material for many technological applications.


2021 ◽  
Author(s):  
Md. Safiuddin ◽  
George Abdel-Sayed ◽  
Nataliya Hearn

Pitch is a viscoelastic polymer material consisting of aromatic hydrocarbons. It is used to produce carbon fibers with sheet-like crystal structures. The aim of the work presented in this paper was to evaluate the effects of pitch-based short carbon fibers on the workability, unit weight, and air content of freshly mixed mortar composite. Experimental investigation was carried out on five different types of mortar composite, including a control mortar. Four mortar composites were prepared including pitch-based short carbon fibers with 1–4% volume contents. The fresh mortar composites were tested to determine their slump, inverted slump cone flow (flow time, mass flow, and volume flow), unit weight, and air content. In addition, the correlation between the slump and flow time of various mortar composites was determined. It was found that the slump decreased with the increasing volume content of carbon fibers. The flow time of mortar composite increased, and therefore its mass flow and volume flow decreased with a greater volume content of carbon fibers. The slump was strongly correlated with the flow time, with a correlation coefficient of 0.9782. Furthermore, the unit weight of the fresh mortar composite decreased due to the incorporation of carbon fibers. However, amongst the different carbon fiber reinforced mortar composites, the mortar with 3% fiber volume content provided the highest unit weight. The air content results were consistent with the unit weight results. The change in air content of various mortar composites followed a trend reciprocal to that of unit weights. When the overall effects of carbon fibers were compared, it was observed that the fiber volume content higher than 3% resulted in a significantly low workability and provided a much lower unit weight with greater entrapped air content.


2014 ◽  
Vol 1081 ◽  
pp. 275-278
Author(s):  
Le Ping Liu ◽  
He Zhu ◽  
Yan He ◽  
Xue Min Cui

The carbon fiber reinforced geopolymer composites were synthesized with metakaolin, water glass and short carbon fibers. The surface treatment short carbon fibers are homogeneously distributed in the geopolymer matrix. The composites exhibit excellent mechanical properties and electrical conductivity. The flexural strength of the Cf /geopolymer composites reached 27 MPa with carbon fiber content of 2.78 %, and its electrical conductivity are increased from 10-5 to 10-1 S.m-1. However, when the carbon fiber content exceeded 4.15 %, the conductivity of the composites kept a constant.


2021 ◽  
Author(s):  
Md. Safiuddin ◽  
George Abdel-Sayed ◽  
Nataliya Hearn

Pitch is a viscoelastic polymer material consisting of aromatic hydrocarbons. It is used to produce carbon fibers with sheet-like crystal structures. The aim of the work presented in this paper was to evaluate the effects of pitch-based short carbon fibers on the workability, unit weight, and air content of freshly mixed mortar composite. Experimental investigation was carried out on five different types of mortar composite, including a control mortar. Four mortar composites were prepared including pitch-based short carbon fibers with 1–4% volume contents. The fresh mortar composites were tested to determine their slump, inverted slump cone flow (flow time, mass flow, and volume flow), unit weight, and air content. In addition, the correlation between the slump and flow time of various mortar composites was determined. It was found that the slump decreased with the increasing volume content of carbon fibers. The flow time of mortar composite increased, and therefore its mass flow and volume flow decreased with a greater volume content of carbon fibers. The slump was strongly correlated with the flow time, with a correlation coefficient of 0.9782. Furthermore, the unit weight of the fresh mortar composite decreased due to the incorporation of carbon fibers. However, amongst the different carbon fiber reinforced mortar composites, the mortar with 3% fiber volume content provided the highest unit weight. The air content results were consistent with the unit weight results. The change in air content of various mortar composites followed a trend reciprocal to that of unit weights. When the overall effects of carbon fibers were compared, it was observed that the fiber volume content higher than 3% resulted in a significantly low workability and provided a much lower unit weight with greater entrapped air content.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1917 ◽  
Author(s):  
Ondrej Petruška ◽  
Jozef Zajac ◽  
Vieroslav Molnár ◽  
Gabriel Fedorko ◽  
Jozef Tkáč

This article explores the effect of carbon fiber content on the flexural strength of polymer concrete testing samples and compares the damping of polymer concrete and U-shaped steel profiles. The experiments involved and described herein consisted of flexural strength testing according to STN EN 12 390-5 Testing of Hardened Concrete, Part 5: Flexural Strength of Test Samples. The test results were evaluated graphically and by calculations and were further processed in various programs. The experimental results indicated that the highest flexural strength value was obtained by the test samples containing 12% of carbon fibers while culminating at 17.9 MPa. The results showed that the highest increase of flexural strength was caused by the addition of 3% of carbon fibers to the mixture, which increased the flexural strength by 4.2 MPa, or 26.75%. The results indicated that, based on the shape of the regression curve, flexural strength culminated at 13% carbon fiber content. The experimental results demonstrated that the tested polymer concrete test sample had a 6.87 times higher attenuation coefficient than the U-shaped steel profile. The results showed that the polymer concrete test sample No. 4 reduced vibration acceleration deviation by 93.5% in 0.005 sec and the U-shaped steel profile by 32.9%.


Fibers ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 63 ◽  
Author(s):  
Md. Safiuddin ◽  
George Abdel-Sayed ◽  
Nataliya Hearn

Pitch is a viscoelastic polymer material consisting of aromatic hydrocarbons. It is used to produce carbon fibers with sheet-like crystal structures. The aim of the work presented in this paper was to evaluate the effects of pitch-based short carbon fibers on the workability, unit weight, and air content of freshly mixed mortar composite. Experimental investigation was carried out on five different types of mortar composite, including a control mortar. Four mortar composites were prepared including pitch-based short carbon fibers with 1–4% volume contents. The fresh mortar composites were tested to determine their slump, inverted slump cone flow (flow time, mass flow, and volume flow), unit weight, and air content. In addition, the correlation between the slump and flow time of various mortar composites was determined. It was found that the slump decreased with the increasing volume content of carbon fibers. The flow time of mortar composite increased, and therefore its mass flow and volume flow decreased with a greater volume content of carbon fibers. The slump was strongly correlated with the flow time, with a correlation coefficient of 0.9782. Furthermore, the unit weight of the fresh mortar composite decreased due to the incorporation of carbon fibers. However, amongst the different carbon fiber reinforced mortar composites, the mortar with 3% fiber volume content provided the highest unit weight. The air content results were consistent with the unit weight results. The change in air content of various mortar composites followed a trend reciprocal to that of unit weights. When the overall effects of carbon fibers were compared, it was observed that the fiber volume content higher than 3% resulted in a significantly low workability and provided a much lower unit weight with greater entrapped air content.


2013 ◽  
Vol 750-752 ◽  
pp. 43-46 ◽  
Author(s):  
Zhu Chen ◽  
Dong Li ◽  
Ai Juan Shi ◽  
Yang Li ◽  
Shu Xin Wu

The short carbon fibers/ room temperature vulcanizing silicone rubber composites were prepared by mechanical mixing method and vulcanization at room temperature for 7 days as internal insulator. The effects of the content of fiber on the mechanical , ablative and adhesive performances for the composites were investigated. The results show that with increasing content of carbon fiber filled, the tensile strength increases, the break elongation decreases, and the ablation rate (Rt) of the composites decreases rapidly at first, then increases. When carbon fiber content is 10phr, the ablation rate (Rt) is 0.076mm/s. no significant differences in adhesive values were obtained yet.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4693
Author(s):  
Md. Safiuddin ◽  
George Abdel-Sayed ◽  
Nataliya Hearn

This paper discusses the performance of the short pitch-based carbon fiber reinforced mortar (CFRM) composite considering its key properties and cost-effectiveness. Five different types of mortar composite were produced using 0–4% volume contents of short pitch-based carbon fibers. The mortar composites were tested for inverted slump cone flow (flow time and volume flow), unit weight, air content, compressive strength, flexural strength, impact resistance, and water absorption. The cost-effectiveness of CFRM was assessed based on the performance to cost ratio (PCR), which was calculated for each mortar composite, considering its workability, mechanical properties, and durability. The inverted slump cone volume flow was counted as a measure of workability, whereas the compressive strength, flexural strength, and impact resistance were considered as the major attributes of the mechanical behavior. In addition, the water absorption was used as a measure of durability. The test results revealed that the mortar composite made with 3% carbon fibers provided adequate workability, a relatively high unit weight and low air content, the highest compressive strength, excellent flexural strength, good impact resistance, and the lowest water absorption. It was also found that the PCR increased up to 3% carbon fibers. Beyond a 3% fiber content, the PCR significantly decreased. The overall research findings revealed that the mortar with 3% carbon fibers was the optimum and most cost-effective mortar composite.


Sign in / Sign up

Export Citation Format

Share Document