Selection of Critical Thermal/Structural Design Parameters for a Metal/Composite Joint in a Composite Electronics Enclosure

1997 ◽  
Vol 10 (4) ◽  
pp. 362-380 ◽  
Author(s):  
L. E. Bailey ◽  
J. C. Roberts ◽  
D. L. Jones
2016 ◽  
Vol 22 (2(99)) ◽  
pp. 48-51
Author(s):  
D.S. Kalynychenko ◽  
◽  
Ye.Yu. Baranov ◽  
M.V. Poluian ◽  
◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Javaid Ahmad ◽  
Shaohong Cheng ◽  
Faouzi Ghrib

Dynamic behaviour of cable networks is highly dependent on the installation location, stiffness, and damping of cross-ties. Thus, these are the important design parameters for a cable network. While the effects of the former two on the network response have been investigated to some extent in the past, the impact of cross-tie damping has rarely been addressed. To comprehend our knowledge of mechanics associated with cable networks, in the current study, an analytical model of a cable network will be proposed by taking into account both cross-tie stiffness and damping. In addition, the damping property of main cables in the network will also be considered in the formulation. This would allow exploring not only the effectiveness of a cross-tie design on enhancing the in-plane stiffness of a constituted cable network, but also its energy dissipation capacity. The proposed analytical model will be applied to networks with different configurations. The influence of cross-tie stiffness and damping on the modal response of various types of networks will be investigated by using the corresponding undamped rigid cross-tie network as a reference base. Results will provide valuable information on the selection of cross-tie properties to achieve more effective cable vibration control.


2011 ◽  
Vol 109 ◽  
pp. 400-404
Author(s):  
Yan Hong Yang ◽  
Da Fu Ni

Performance and working principle of high-efficiency multi-cyclone were analyzed, and the structural design shortage of original high-efficiency multi-cyclone was pointed out. Its structure was researched and designed, including determination of setting chamber and pipe number, selection of material and the design of cyclones.


2021 ◽  
Author(s):  
Nitin D. Pagar ◽  
Amit R. Patil

Abstract Exhaust expansion joints, also known as compensators, are found in a variety of applications such as gas turbine exhaust pipes, generators, marine propulsion systems, OEM engines, power units, and auxiliary equipment. The motion compensators employed must have accomplished the maximum expansion-contraction cycle life while imposing the least amount of stress. Discrepancies in the selecting of bellows expansion joint design parameters are corrected by evaluating stress-based fatigue life, which is challenging owing to the complicated form of convolutions. Meridional and circumferential convolution stress equations that influencing fatigue cycles are evaluated and verified with FEA. Fractional factorial Taguchi L25 matrix is used for finding the optimal configurations. The discrete design parameters for the selection of the suitable configuration of the compensators are analysed with the help of the MADM decision making techniques. The multi-response optimization methods GRA, AHP, and TOPSIS are used to determine the parametric selection on a priority basis. It is seen that weighing distribution among the responses plays an important role in these methods and GRA method integrated with principal components shows best optimal configurations. Multiple regression technique applied to these methods also shows that PCA-GRA gives better alternate solutions for the designer unlike the AHP and TOPSIS method. However, higher ranked Taguchi run obtained in these methods may enhance the suitable selection of different design configurations. Obtained PCA-GRG values by Taguchi, Regression and DOE are well matched and verified for the all alternate solutions. Further, it also shows that stress based fatigue cycles obtained in this analysis for the L25 run indicates the range varying from 1.13 × 104 cycles to 9.08 × 105 cycles, which is within 106 cycles. This work will assist the design engineer for selecting the discrete parameters of stiff compensators utilized in power plant thermal appliances.


Author(s):  
Steven M. Wilkerson ◽  
Satish Nagarajaiah

As the oil offloading operations of floating production storage and offloading (FPSO) units become more routine, the desire grows to increase the availability for offloading and thus decrease production downtime. Experience with these operations is the main tool available to increase the efficiency of this aspect of deepwater production. However, it is clear that a formal optimization approach can help to fine tune design parameters so that not only is availability increased but the significance of each design parameter can be better understood. The key issue is to define the environmental conditions under which the vessels involved in offloading are able to maintain position. By this, we reduce the notion of availability to a set of operating criteria, which can or cannot be met for a particular set of environmental conditions. The actual operating criteria such as relative vessel heading depend on selection of design parameters, such as the direction and magnitude of external force applied by thrusters or tugs. In the earliest offloading operations, engineering judgment was used to determine the feasibility of offloading at a particular time. For example, if wind and current were not expected to exceed a 1year return period, offloading may be considered safe. This approach can be both conservative and unconservative, depending on the nuances of the particular environmental conditions. This study will propose a formal approach to choosing the design parameters that optimize the availability of a FPSO for offloading. A simple analysis model will be employed so that optimization can be performed quickly using a robust second order method. The proposed analysis model will be compared to model test data to demonstrate its agreement with the more complex system.


2012 ◽  
Vol 479-481 ◽  
pp. 670-675
Author(s):  
Jia Wu ◽  
Lu Xiong

Wheel hub bearings are weak parts in wheel driving system because of its bad condition of loads. This paper has selected two typical extreme working conditions for vehicle, namely braking with turning and driving with turning, and analyzed loads of wheel hub bearings. The design parameters of wheel hub bearings are analyzed separately, with the purpose of finding the key parameters in them, which influenced the force of bearing, and finally these important parameters for structural design have been optimized, the force of wheel hub bearings has been decreased by 45%.


Sign in / Sign up

Export Citation Format

Share Document