scholarly journals Accuracy and finish during wire electric discharge machining of metal matrix composites for different reinforcement size and machining conditions

Author(s):  
Alokesh Pramanik ◽  
Mohammad Nazrul Islam ◽  
Brian Boswell ◽  
Animesh K Basak ◽  
Yu Dong ◽  
...  

Electric discharge machining has been established as an effective alternative process to conventional material removal processes for machining reinforced metal matrix composites. Wire cut electric discharge machining holes were produced in a metal matrix composite (10 vol% of SiC in Al6061), which were then investigated to determine the machinability of the material using this process. It was observed that the input factors such as the size of reinforced particles, wire tension and pulse-on time significantly affect diameter error, circularity and surface roughness. Pulse-on time, the interaction between pulse-on time and wire tension contribute to the maximum diameter error. The wire tension is the most significant factor to circularity, which is followed by the interaction between pulse-on time. In particular, wire tension with low and high tensions results in poor circularity. It has been found that there are more surface defects encountered when particle sizes are smaller, and circularity is improved when particles are in a medium size. In addition, the surface defect is reduced as the particles increase the melting resistance of the surface. The higher pulse-on time leads to higher heat and more time to degrade the surface. Therefore, low pulse-on time and wire tension gave better surface finish.

Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1289
Author(s):  
Sarabjeet Singh Sidhu ◽  
Timur Rizovich Ablyaz ◽  
Preetkanwal Singh Bains ◽  
Karim Ravilevich Muratov ◽  
Evgeny Sergeevich Shlykov ◽  
...  

The present study reports on the method used to obtain the reliable outcomes for different responses in electric discharge machining (EDM) of metal matrix composites (MMCs). The analytic hierarchy process (AHP), a multiple criteria decision-making technique, was used to achieve the target outcomes. The process parameters were varied to evaluate their effect on the material erosion rate (MER), surface roughness (SR), and residual stresses (σ) following Taguchi’s experimental design. The process parameters, such as the electrode material (Cu, Gr, Cu-Gr), current, pulse duration, and dielectric medium, were selected for the analysis. The residual stresses induced due to the spark pulse temperature gradient between the electrode were of primary concern during machining. The optimum process parameters that affected the responses were selected using AHP to figure out the most suitable conditions for the machining of MMCs.


2011 ◽  
Vol 383-390 ◽  
pp. 3223-3228 ◽  
Author(s):  
V. Muthuraman ◽  
R. Ramakrishnan

Tungsten carbide - Cobalt (WC-Co) reinforced metal matrix composites are most commonly used as tool and die materials. The machining of WC- Co metal matrix composites is usually done by wire electric discharge machining. However during WEDM of WC-Co samples possibility of defects and electrolyzation is high. Also coating of Cu-Zn tool electrode on machined surface and void space takes place, thereby affecting material integrity. Analyzing the microstructures can remarkably reveal the identification, location, extent and criticality of the defects. In this study WC-Co metal matrix composite was wire electric discharge machined with two critical parameters, pulse on time and delay time. The machined samples were analyzed using micrographs, scanning electron microscope, EDAX and the results tabulated. It was found, that lower pulse-on time and medium pulse-off time leads to less rapid quenching and subsequent improvement in surface finish, less craters, voids. This prevents potential sites for defect and weakening of material by filling with cu-zinc particles for unbounded tungsten particle.


Sign in / Sign up

Export Citation Format

Share Document