A compensation algorithm of tool path for grinding wheel wear in solid cutting tool flank grinding

Author(s):  
Yuhao Ma ◽  
Yong Li ◽  
Lei Jiang ◽  
Guofu Ding

In finishing machining, the quality of workpiece is significantly influenced by the performance of solid cutting tool. Solid cutting tool flank is ground by CNC tool grinder in accordance with the tool path of grinding wheel. In actual grinding process, the grinding area of wheel will be gradually worn down, resulting in the decrease of geometric accuracy of flank and even wrong profile. In order to compensate the error, a compensation algorithm of tool path for solid cutting tool flank based on grinding wheel wear is proposed. Firstly, the coordinate systems are defined for the grinding process of flank, and the orientation and location calculation model of ideal wheel with the grinding process parameters is derived. Secondly, based on the profile description of wheel wear, flank errors are analyzed. Then, the compensation algorithm for anastomosis of cutting edge and relief angle is proposed. Finally, series of experiments of simulation and actual grinding are carried out. The comparison of the results shows that the algorithm can reduce the influence of wheel wear effectively, which can also improve the grinding quality stability and prolong the service life of grinding wheel.

2018 ◽  
Vol 767 ◽  
pp. 259-267 ◽  
Author(s):  
Frederik Vits ◽  
Daniel Trauth ◽  
Patrick Mattfeld ◽  
Rudolf Vits ◽  
Fritz Klocke

Cutting tools made of polycrystalline diamond (PCD) are used for machining of aluminum alloys, fiber-reinforced plastic composites and wood. Compared to cemented carbide tools with geometrically defined cutting edges, PCD tools offer significant advantages with respect to tool life. High demands regarding the cutting edge roughness and the quality of the rake and the flank face usually require a grinding process with diamond grinding wheels. The PCD grinding process, however, is characterized by low material removal rates and high grinding wheel wear. The material removal rate and the grinding wheel wear, in turn, highly depend on the process state variables process force and process temperature. However, the relationship between these process state variables and the process input variables is largely unknown. This work provides a contribution to the closure of this knowledge gap by means of an adapted friction law. A single grain friction test stand using the pin-disk principle was developed, which enables a measurement of the friction force and the contact zone temperature for normal forces and relative speeds that are common in PCD grinding. During the experiments, the specification of the PCD disc, the cross-sectional area of the friction sample made of monocrystalline diamond as well as the process parameters normal force and relative speed were varied. In addition, the tests were carried out without lubrication as well as with a minimum lubrication. A high correlation between the contact force and the coefficient of friction was determined. This relationship was mathematically formulated in a friction law. In addition, a direct influence of the contact force and the relative velocity on the contact zone temperature was identified. The knowledge gained leads to an improved understanding of the PCD grinding process and thus enables a more efficient grinding process design.


2007 ◽  
Vol 329 ◽  
pp. 75-80 ◽  
Author(s):  
H.X. Zhang ◽  
Wu Yi Chen ◽  
Z.T. Chen

The grinding process has been investigated in the machining of titanium alloy with conventional grinding wheel and SG grinding wheel respectively. The machinability discussed here includes grinding force, surface roughness, dimensional accuracy, grinding ratio, grinding-wheel wear and grinding-wheel life. The SG grinding wheel is found to possess particularly good grinding properties and is more suitable for grinding titanium alloy when compared with conventional abrasive tools.


2020 ◽  
Vol 977 ◽  
pp. 3-11 ◽  
Author(s):  
Thi Hong Tran ◽  
Anh Tung Luu ◽  
Quoc Tuan Nguyen ◽  
Hong Ky Le ◽  
Tien Dung Hoang ◽  
...  

This study aims to propose a method to calculate optimum exchanged grinding wheel diameter to minimize grinding cost in grinding surface process for stainless steel. The interactions of the grinding cost and optimum exchanged grinding wheel diameter have been analyzed and presented in mathematical formulae. To obtain the minimal grinding cost, the optimal exchanged grinding wheel diameter has been determined by investigating six two-level grinding process parameters including initial grinding wheel diameter, total dressing depth, radial grinding wheel wear per dress, wheel life, machine tool hour and grinding wheel cost. Based on 26 experiments conducted in computational program, the optimal exchanged grinding wheel diameter is presented as a function of these grinding parameters. This developed model has been verified and proven by experimental results. The proposed method of calculation of the optimum exchanged grinding wheel diameter can be applied in practice to reduce the grinding cost.


1976 ◽  
Vol 98 (3) ◽  
pp. 1048-1052 ◽  
Author(s):  
R. W. Mayne ◽  
S. Malkin

This paper is concerned with the application of nonlinear programming methods to the surface grinding of steels and considers the specific case of plunge grinding. Performance equations based on a model of the process are presented and then optimized. Trade-off curves are established showing the best metal removal rate possible for given constraints on surface quality and at specified conditions of grinding wheel wear. Optimum values for the various parameters in the grinding process are also included. In addition, the sensitivity of steel grinding performance to nonoptimum choices of grinding wheel velocity and diameter is considered.


2008 ◽  
Vol 389-390 ◽  
pp. 108-113 ◽  
Author(s):  
Hwa Soo Lee ◽  
Takazo Yamada ◽  
Naoyuki Ishida

Surface geometries of grinding wheels vary due to the wear in grinding process. Since the wheel wear patterns are affected by the grinding process, measuring and investigating these patterns quantitatively, grinding process can be evaluated whether appropriate or not. Utilizing a three-dimensional measuring device for wheel surfaces developed so far, this study aims to evaluate wheel wear patterns quantitatively. As the results, applying developed device, it is clarified that wheel wear pattern can be classified and evaluated quantitatively.


2011 ◽  
Vol 496 ◽  
pp. 7-12 ◽  
Author(s):  
Takazo Yamada ◽  
Michael N. Morgan ◽  
Hwa Soo Lee ◽  
Kohichi Miura

In order to obtain the effective depth of cut on the ground surface, a new grinding process model taking into account thermal expansions of the grinding wheel and the workpiece, elastic deformations of the grinding machine, the grinding wheel and the workpiece and the wheel wear was proposed. Using proposed model, the effective depth of cut was calculated using measured results of the applied depth of cut and the normal grinding force.


2015 ◽  
Vol 68 (2) ◽  
pp. 229-238
Author(s):  
Hamilton Jose de Mello ◽  
Diego Rafael de Mello ◽  
Eduardo Carlos Bianchi ◽  
Paulo Roberto de Aguiar ◽  
Doriana M. D'Addona

AbstractThere has been a great advance in the grinding process by the development of dressing, lubri-refrigeration and other methods. Nevertheless, all of these advances were gained only for continuous cutting; in other words, the ground workpiece profile remains unchanged. Hence, it becomes necessary to study grinding process using intermittent cutting (grooved workpiece – discontinuous cutting), as little or no knowledge and studies have been developed for this purpose, since there is nothing found in formal literature, except for grooved grinding wheels. During the grinding process, heat generated in the cutting zone is extremely high. Therefore, plenty of cutting fluids are essential to cool not only the workpiece but also the grinding wheel, improving the grinding process. In this paper, grinding trials were performed using a conventional aluminum oxide grinding wheel, testing samples made of AISI 4340 steel quenched and tempered with 2, 6, and 12 grooves. The cylindrical plunge grinding was performed by rotating the workpiece on the grinding wheel. This plunge movement was made at three different speeds. From the obtained results, it can be observed that roughness tended to increase for testing sample with the same number of grooves, as rotation speed increased. Roundness error also tended to increase as the speed rotation process got higher for testing the sample with the same number of grooves. Grinding wheel wear enhanced as rotation speed and number of grooves increased. Power consumed by the grinding machine was inversely proportional to the number of grooves. Subsuperficial microhardness had no significant change. Micrographs reveal an optimal machining operation as there was no significant damage on the machined surface.


Sign in / Sign up

Export Citation Format

Share Document