Geometric accuracy allocation for multi-axis CNC machine tools based on sensitivity analysis and reliability theory

Author(s):  
Qiang Cheng ◽  
Ziling Zhang ◽  
Guojun Zhang ◽  
Peihua Gu ◽  
Ligang Cai

Machining accuracy of a machine tool is influenced by geometric errors produced by each part and component. Different errors have varying influence on the machining accuracy of a tool. The aim of this study is to optimize errors to get a desired performance for a numerical control machine tool. Applying multi-body system theory, a volumetric error model was constructed to track and compensate effects of errors during operation of the machine, and to relate the functional specifications on volumetric accuracy to the permissible errors on the joints and links of the machine. Error sensitivity analysis was used to identify the influence of different errors (especially the errors which have large influences) on volumetric error. Based on First Order and Second Moment theory, an error allocation approach was developed to optimize allocation of manufacturing and assembly tolerances along with specifying the operating conditions to determine the optimal level of these errors so that the cost of controlling them and the cost of failure to meet the specifications is minimized. The approach developed was implemented in software and an example of the geometric errors budgeting for a five-axis machine was discussed. It is identified that the different optimal standard deviations reflect the cost-weighted influences of the respective parameters in the equations of the functional requirements. This study suggests that it is possible to determine the coupling relationships between these errors and optimize the allowable error budgeting between these sources.

2012 ◽  
Vol 271-272 ◽  
pp. 493-497
Author(s):  
Wei Qing Wang ◽  
Huan Qin Wu

Abstract: In order to determine that the effect of geometric error to the machining accuracy is an important premise for the error compensation, a sensitivity analysis method of geometric error is presented based on multi-body system theory in this paper. An accuracy model of five-axis machine tool is established based on multi-body system theory, and with 37 geometric errors obtained through experimental verification, key error sources affecting the machining accuracy are finally identified by sensitivity analysis. The analysis result shows that the presented method can identify the important geometric errors having large influence on volumetric error of machine tool and is of help to improve the accuracy of machine tool economically.


2017 ◽  
Vol 9 (7) ◽  
pp. 168781401770764 ◽  
Author(s):  
Jinwei Fan ◽  
Yuhang Tang ◽  
Dongju Chen ◽  
Changjun Wu

This article proposes a tracing method to identify key geometric errors for a computer numerical control machine tool by cutting an S-shaped test piece. Adjacent part relationships and machine tool errors transform relationships are described by topology of the machining center. Global sensitivity analysis method based on quasi-Monte Carlo was used to analyze machining errors. Using this method, key geometric errors with significant influence on machining errors were obtained. Compensation of the key errors was used to experimentally improve machining errors for the S-shaped test piece. This method fundamentally determines the inherent connection and influence between geometric errors and machining errors. Key geometric errors that have great influence on machining errors can be determined quickly with this method. Thus, the proposed tracing method could provide effective guidance for the design and use of machine tools.


Author(s):  
Xuan Luo ◽  
Fugui Xie ◽  
Xin-Jun Liu ◽  
Jie Li

5-Degree-of-freedom parallel kinematic machine tools are always attractive in manufacturing industry due to the ability of five-axis machining with high stiffness/mass ratio and flexibility. In this article, error modeling and sensitivity analysis of a novel 5-degree-of-freedom parallel kinematic machine tool are discussed for its accuracy issues. An error modeling method based on screw theory is applied to each limb, and then the error model of the parallel kinematic machine tool is established and the error mapping Jacobian matrix of 53 geometric errors is derived. Considering that geometric errors exert both impacts on value and direction of the end-effector’s pose error, a set of sensitivity indices and an easy routine for sensitivity analysis are proposed according to the error mapping Jacobian matrix. On this basis, 10 vital errors and 10 trivial errors are identified over the prescribed workspace. To validate the effects of sensitivity analysis, several numerical simulations of accuracy design are conducted, and three-dimensional model assemblies with relevant geometric errors are established as well. The simulations exhibit maximal −0.10% and 0.34% improvements of the position and orientation errors, respectively, after modifying 10 trivial errors, while minimal 65.56% and 55.17% improvements of the position and orientation errors, respectively, after modifying 10 vital errors. Besides the assembly reveals an output pose error of (0.0134 mm, 0.0020 rad) with only trivial errors, while (2.0338 mm, 0.0048 rad) with only vital errors. In consequence, both results of simulations and assemblies validate the correctness of the sensitivity analysis. Moreover, this procedure can be extended to any other parallel kinematic mechanisms easily.


2011 ◽  
Vol 108 ◽  
pp. 61-66 ◽  
Author(s):  
Qiang Cheng ◽  
Dong Sheng Xuan ◽  
Jie Sun ◽  
Zhi Feng Liu

Parts of geometric error coupled into space error is the main reason that affects machining accuracy of machine tools; therefore, how to determine the effect of geometric error to the machining accuracy and then assigning geometry precision of parts economically is a difficult problem in machine tool designing process. Therefore, based on multi-body system theory, a sensitivity analysis method of geometric error is put forward in this paper. Let’s take precision vertical machining center for an example. Firstly, an accuracy model of machining center is established based on multi-body system theory, and with 21 geometric errors obtained through experimental verification, key error sources affecting the machining accuracy are finally identified by sensitivity analysis. The example analysis shows that the proposed method can effectively identify the main geometric errors of parts that have great influence on volumetric error of machine tool, and thus provides important theoretical basis to improve the accuracy of machine tool economically.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Shijie Guo ◽  
Dongsheng Zhang ◽  
Yang Xi

A quantitative analysis to identify the key geometric error elements and their coupling is the prerequisite and foundation for improving the precision of machine tools. The purpose of this paper is to identify key geometric error elements and compensate for geometric errors accordingly. The geometric error model of three-axis machine tool is built on the basis of multibody system theory; and the quantitative global sensitivity analysis (GSA) model of geometric error elements is constructed by using extended Fourier amplitude sensitivity test method. The crucial geometric errors are identified; and stochastic characteristics of geometric errors are taken into consideration in the formulation of building up the compensation strategy. The validity of geometric error compensation based on sensitivity analysis is verified on a high-precision three-axis machine tool with open CNC system. The experimental results show that the average compensation rates along theX,Y, andZdirections are 59.8%, 65.5%, and 73.5%, respectively. The methods of sensitivity analysis and geometric errors compensation presented in this paper are suitable for identifying the key geometric errors and improving the precision of CNC machine tools effectively.


Author(s):  
Qiang Cheng ◽  
Qiunan Feng ◽  
Zhifeng Liu ◽  
Peihua Gu ◽  
Ligang Cai

Geometric error has significant influence on the processing results and reduces machining accuracy. Machine tool geometric errors can be interpreted as a deterministic value with an uncertain fluctuation of probabilistic distribution. Although, the uncertain fluctuation can not be compensated, it has extremely profound significance on the precision and ultra-precision machining to reduce the fluctuation range of machining accuracy as far as possible. In this paper, a typical 3-axis machine tool with high precision is selected and the fluctuations in machining accuracy are studied. The volumetric error modeling of machine tool is established by multi-body system (MBS) theory, which describes the topological structure of MBS in a simple and convenient matrix form. Based on the volumetric error model, the equivalent components of the errors for the three axes are established by reducing error terms. Then, the fluctuations of equivalent errors and the machining accuracy in working planes are depicted and predicted using the theory of stochastic process, whose range should be controlled within a certain confidence interval. Furthermore, the critical geometric errors that have significant influence on the machining accuracy fluctuation are identified. Based on the analysis results, some improvement in the machine tool parts introduced and the results for the modified machine show that the prediction allow for reduction in errors for the precision and ultra-precision machining.


2014 ◽  
Vol 513-517 ◽  
pp. 4202-4205
Author(s):  
Hong Xin Zhang ◽  
Qian Jian Guo

With the increasing requirements of the machining accuracy of CNC machine tools, the impact of thermal deformation is growing. Thermal error compensation technology can predict and compensate the thermal errors in real-time, and improve the machining accuracy of the machine tool. In this paper, the research objects of thermal error compensation is expanded to the volumetric error of the machine tool, the volumetric error modeling of a three-axis machine tool is fulfilled and a compensator is developed for the compensation experiment, which provides scientific basis for the improvement of the machining accuracy.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Qiang Cheng ◽  
Can Wu ◽  
Peihua Gu ◽  
Wenfen Chang ◽  
Dongsheng Xuan

Traditional approaches about error modeling and analysis of machine tool few consider the probability characteristics of the geometric error and volumetric error systematically. However, the individual geometric error measured at different points is variational and stochastic, and therefore the resultant volumetric error is aslo stochastic and uncertain. In order to address the stochastic characteristic of the volumetric error for multiaxis machine tool, a new probability analysis mathematical model of volumetric error is proposed in this paper. According to multibody system theory, a mean value analysis model for volumetric error is established with consideration of geometric errors. The probability characteristics of geometric errors are obtained by statistical analysis to the measured sample data. Based on probability statistics and stochastic process theory, the variance analysis model of volumetric error is established in matrix, which can avoid the complex mathematics operations during the direct differential. A four-axis horizontal machining center is selected as an illustration example. The analysis results can reveal the stochastic characteristic of volumetric error and are also helpful to make full use of the best workspace to reduce the random uncertainty of the volumetric error and improve the machining accuracy.


2013 ◽  
Vol 284-287 ◽  
pp. 1723-1728
Author(s):  
Shih Ming Wang ◽  
Han Jen Yu ◽  
Hung Wei Liao

Error compensation is an effective and inexpensive way that can further enhance the machining accuracy of a multi-axis machine tool. The volumetric error measurement method is an essential of the error compensation method. The measurement of volumetric errors of a 5-axis machine tool is very difficult to be conducted due to its complexity. In this study, a volumetric-error measurement method using telescoping ball-bar was developed for the three major types of 5-axis machines. With the use of the three derived error models and the two-step measurement procedures, the method can quickly determine the volumetric errors of the three types of 5-axis machine tools. Comparing to the measurement methods currently used in industry, the proposed method provides the advantages of low cost, easy setup, and high efficiency.


Sign in / Sign up

Export Citation Format

Share Document