Controlled synchronization of two nonidentical homodromy coupling exciters driven by inductor motors in a vibratory system

Author(s):  
Xiangxi Kong ◽  
Xiaozhe Chen ◽  
Jingxin Dou ◽  
Xueliang Zhang ◽  
Bangchun Wen

In this work, the controlled synchronization of two nonidentical homodromy coupling exciters driven by inductor motors in a vibratory system is investigated. According to the previous works, using small parameter perturbation method deduces the conditions of implementing self-synchronous motion of two exciters. The shortage of self-synchronization method in design of vibratory system is found. The controlled synchronization method is proposed by employing sliding mode control and proportional–integral method on two inductor motors based on the master-slave control strategy to replace the self-synchronization. The stability of the controllers is proved by Lyapunov theorem. The performances of the control system are demonstrated by numerical simulation, which shows the controlled synchronization method is feasible. Additionally, the effects of various uncertainties including internal parameter perturbations and external disturbances on the control system are discussed, which indicate the proposed controllers have a good robustness.

2014 ◽  
Vol 668-669 ◽  
pp. 629-632 ◽  
Author(s):  
Zhi Yu Huang ◽  
Jun Bing Chen

As the electric vehicles usually run under complex conditions of city road, there always exists parameter perturbation of motor, which will affect the vehicle performance. To solve the problem, an improved sliding mode variable structure control (SMC) method which combines continuous function and reaching law has been proposed in this paper. Then the improved vector control algorithm’s codes are generated automatically in the MMC (Model-based Motor Control) platform. The results show that the improved SMC algorithm has small chattering and strong robustness to the parameter perturbation and the external disturbances.


Author(s):  
Yi Min Zhao ◽  
Yu Lin ◽  
Fengfeng Xi ◽  
Shuai Guo ◽  
Puren Ouyang

The robotic riveting system requires a rivet robotic positioning process for rivet-in-hole insertions, which can be divided into two stages: rivet path-following and rivet spot-positioning. For the first stage, varying parameter-linear sliding surfaces are proposed to achieve robust rivet path-following against robot errors and external disturbances of the robotic riveting system. For the second stage, a second-order sliding surface is applied to attain accurate rivet spot-positioning within a finite time required by the riveting process. In order to improve the dynamic performance of the robot riveting system, the motion of robot end-effector between the two adjacent riveting spots has been properly designed. Overall, the proposed control scheme can guarantee not only the stability of the robot control system but also the robust rivet path-following and quick rivet spot-positioning in the presence of the robot errors and external disturbances of the robotic riveting system. The simulation and experimental results demonstrate the effectiveness of the proposed control scheme.


2017 ◽  
Vol 13 (1) ◽  
pp. 114-122
Author(s):  
Abdul-Basset AL-Hussein

A composite PD and sliding mode neural network (NN)-based adaptive controller, for robotic manipulator trajectory tracking, is presented in this paper. The designed neural networks are exploited to approximate the robotics dynamics nonlinearities, and compensate its effect and this will enhance the performance of the filtered error based PD and sliding mode controller. Lyapunov theorem has been used to prove the stability of the system and the tracking error boundedness. The augmented Lyapunov function is used to derive the NN weights learning law. To reduce the effect of breaching the NN learning law excitation condition due to external disturbances and measurement noise; a modified learning law is suggested based on e-modification algorithm. The controller effectiveness is demonstrated through computer simulation of cylindrical robot manipulator.


2018 ◽  
Vol 69 (5) ◽  
pp. 329-336 ◽  
Author(s):  
Chems Eddine Boudjedir ◽  
Djamel Boukhetala ◽  
Mohamed Bouri

Abstract In this paper, a hybrid nonlinear proportional-derivative-sliding mode controller (NPD-SMC) is developed for the trajectory tracking of robot manipulators. The proposed controller combines the advantage of the easy implementation of NPD control and the robustness of SMC. The gains of PD control are tuned on-line in order to increase the convergence rate, whereas the SMC term is introduced to reject the external disturbances without requiring to know the system dynamics. The stability of the NPD-SMC is proved using Lyaponuv theorem, and it is demonstrated that the tracking error and the tracking error rate converge asymptotically to zero. Experiments are carried out on the parallel Delta robot to illustrate the effectiveness and robustness of the proposed approach. It is also shown the superiority of the NPD-SMC control over the NPD control and PD-SMC control.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Wonhee Kim ◽  
Chang Mook Kang ◽  
Young Seop Son ◽  
Chung Choo Chung

A nonlinear backstepping control is proposed for the coupled normal form of nonlinear systems. The proposed method is designed by combining the sliding-mode control and backstepping control with a disturbance observer (DOB). The key idea behind the proposed method is that the linear terms of state variables of the second subsystem are lumped into the virtual input in the first subsystem. A DOB is developed to estimate the external disturbances. Auxiliary state variables are used to avoid amplification of the measurement noise in the DOB. For output tracking and unmatched disturbance cancellation in the first subsystem, the desired virtual input is derived via the backstepping procedure. The actual input in the second subsystem is developed to guarantee the convergence of the virtual input to the desired virtual input by using a sliding-mode control. The stability of the closed-loop is verified by using the input-to-state stable (ISS) property. The performance of the proposed method is validated via numerical simulations and an application to a vehicle system based on CarSim platform.


2019 ◽  
Vol 20 (8) ◽  
pp. 451-460 ◽  
Author(s):  
A. A. Kolesnikov ◽  
A. A. Kuz’menko

Sliding mode control (SMC) laws are commonly used in engineering to make a system robust to parameters change, external disturbances and control object unmodeled dynamics. State-of-the-art capabilities of the theory of adaptive and robust control, the theory of fuzzy systems, artificial neural networks, etc., which are combined with SMC, couldn’t resolve current issues of SMC design: vector design and stability analysis of a closed-loop system with SMC are involved with considerable complexity. Generally the classical problem of SMC design consists in solving subtasks for transit an object from an arbitrary initial position onto the sliding surface while providing conditions for existence of a sliding mode at any point of the sliding surface as well as ensuring stable movement to the desired state. As a general rule these subtasks are solved separately. This article presents a methodology for SMC design based on successive aggregation of invariant manifolds by the procedure of method of Analytical Design of Aggregated Regulators (ADAR) from the synergetic control theory. The methodology allows design of robust control laws and simultaneous solution of classical subtasks of SMC design for nonlinear objects. It also simplifies the procedure for closed-loop system stability analyze: the stability conditions are made up of stability criterions for ADAR method functional equations and the stability criterions for the final decomposed system which dimension is substantially less than dimension of the initial system. Despite our paper presents only the scalar SMC design procedure in details, the ideas are also valid for vector design procedure: the main difference is in the number of invariant manifolds introduced at the first and following stages of the design procedure. The methodology is illustrated with design procedure examples for nonlinear engineering systems demonstrating the achievement of control goals: hitting to target invariants, insensitivity to emerging parametric and external disturbances.


Author(s):  
Naeimadeen Noghredani ◽  
Saeed Balochian

Abstract Fractional-order chaotic unified systems include a variety of fractional-order chaotic systems such as Chen, Lorenz, Lu, Liu, and financial systems. This paper describes a sliding mode controller for synchronisation of fractional-order chaotic unified systems in the presence of uncertainties and external disturbances, and affirms the stability of the controller (which is composed of error dynamics). Moreover, the synchronisation of two separate fractional-order chaotic systems is studied. For this aim, fractional integral sliding surface is defined. Then the sliding mode control rule for stability of error dynamic is presented based on the Lyapunov stability theorem. Simulation results, obtained by using MATLAB, show that the proposed sliding mode has employed an appropriate approach against uncertainties and to reduce the chattering phenomenon that often occurs with sliding mode controllers.


2011 ◽  
Vol 138-139 ◽  
pp. 523-528
Author(s):  
Guo Qin Gao ◽  
Hai Bin Zheng ◽  
Xue Mei Niu

This paper addresses the motion control of the parallel mechanism of virtual axis machine tool, which has a complex system model, the nonlinear and strong coupling characteristics and has strong external disturbances in high-speed machining. To further enhance its motion control performances, a novel adaptive dynamic sliding mode control method is proposed. The designed control system stability is proved theoretically. By building a new switching function, the second-order dynamic sliding mode control algorithm is designed to reduce the chattering of the conventional sliding mode control effectively and overcome the adverse effects of the fast changing dynamics of the actuators. By introducing the adaptive control, unknown external disturbances can be estimated online, which can improve the ability of resisting strong disturbances and the control precision of virtual axis machine tool. The simulation results for the virtual axis machine tool show that the designed control system has the good performances in tracking and resisting strong disturbances and can achieve the high precision motion control of the parallel mechanism of virtual axis machine tool.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Lei Zuo ◽  
Ye Zhang ◽  
Maode Yan ◽  
Wenrui Ma

This paper investigates the nonlinear vehicle platoon control problems with external disturbances. The quadratic spacing policy (QSP) is applied into the platoon control, in which the desired intervehicle distance is a quadratic function in terms of the vehicle’s velocities. Comparing with the general constant time headway policy (CTHP), the QSP is more suitable to the human driving behaviors (HDB) and can improve the traffic capacity. Then, a novel platoon control scheme is proposed based on the distributed integrated sliding mode (DISM). Since the external disturbances are taken into consideration, the sliding mode method is employed to handle the disturbances. Moreover, the stability and string stability of the proposed platoon control system are strictly analyzed. In final, numerical simulations are provided to verify the proposed approaches.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Chutiphon Pukdeboon

This paper presents a new robust inverse optimal control strategy for flexible spacecraft attitude maneuvers in the presence of external disturbances and actuator constraint. A new constrained attitude controller for flexible spacecraft is designed based on the Sontag-type formula and a control Lyapunov function. This control law optimizes a meaningful cost functional and the stability of the resulting closed-loop system is ensured by the Lyapunov framework. A sliding mode disturbance observer is used to compensate unknown bounded external disturbances. The ultimate boundedness of estimation error dynamics is guaranteed via a rigorous Lyapunov analysis. Simulation results are provided to demonstrate the performance of the proposed control law.


Sign in / Sign up

Export Citation Format

Share Document