scholarly journals Solar.q_1: A new solar-tracking mechanism based on four-bar linkages

Author(s):  
Giuseppe Quaglia ◽  
Simone Luca Maurino

This paper describes the early stages of the design process of a 2-DOF parallel mechanism, based on the use of four-bar linkages and intended to move photovoltaic panels in order to perform sun tracking. Primary importance is given to the search for a way to compensate sun–earth’s relative motions with two decoupled rotations of the panel. This leads to devise a kinematic structure characterized by a particular arrangement of the revolute axes. At the same time, the structure itself is designed in order to be slender. Subsequently, the fact that during a day the earth’s revolution around the sun has negligible effects on the apparent trajectory of the sun, if compared to the rotation around the polar axis, leads to choose a control strategy which, also thanks to the said arrangement of axes, employs only 1-DOF for most of the daytime. The tracker which employs this strategy has, theoretically, an energy consumption similar to that of 1-DOF solar trackers but a precision similar to that of 2-DOF ones.

Author(s):  
Oscar Altuzarra ◽  
Erik Macho ◽  
Jokin Aginaga ◽  
Victor Petuya

Solar trackers are devices that improve the efficiency of photovoltaic collectors increasing the area exposed to direct radiation of the sun. The main drawback of these kinds of devices is that they have to consume certain energy in order to move the collectors following the sun trajectory. This work presents the detailed design of a mechanism with parallel kinematics architecture able to accurately follow the sun motion, which has been designed with the aim of minimizing the energy consumption during its operation.


2018 ◽  
Vol 2 (1) ◽  
pp. 1-8 ◽  
Author(s):  
David Krantz

By policy design, consumers are supposed to save money when they invest in solar energy. This paper presents a case study of what happens when a church goes solar and the finances go wrong. Following the installation of solar-photovoltaic panels, the Arizona church—in the Valley of the Sun, among the sunniest places in the country—decreased its energy consumption, but its electric bills went up. Through oral-history interviews of key stakeholders, the author investigates what happened, and what could be done to prevent other religious institutions and nonprofits from experiencing the church’s fate.


Author(s):  
Stefano Mauro ◽  
Cristina Scarzella

The paper describes a 2-DOF parallel kinematic machine designed to achieve precise solar tracking. The mechanism has been developed keeping in mind that solar concentration technology requires a precise alignment of photovoltaic modules and sun radiation, with error allowance much lower than those ensured by traditional sun trackers. The paper describes the kinematic structure and discusses its forward and inverse kinematic, providing the tools to design a system that satisfies the requirements for dexterity and workspace.


Author(s):  
Camilo POTOCNJAK-OXMAN

Stir was a crowd-voted grants platform aimed at supporting creative youth in the early stages of an entrepreneurial journey. Developed through an in-depth, collaborative design process, between 2015 and 2018 it received close to two hundred projects and distributed over fifty grants to emerging creatives and became one of the most impactful programs aimed at increasing entrepreneurial activity in Canberra, Australia. The following case study will provide an overview of the methodology and process used by the design team in conceiving and developing this platform, highlighting how the community’s interests and competencies were embedded in the project itself. The case provides insights for people leading collaborative design processes, with specific emphasis on some of the characteristics on programs targeting creative youth


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 529
Author(s):  
Cristian Verdugo ◽  
Jose Ignacio Candela ◽  
Pedro Rodriguez

Series connections of modules in cascaded multilevel converters are prone to power imbalances due to voltage differences on their DC side. When modules are connected to direct current (DC) sources, such as photovoltaic panels, the capability of withstanding power imbalances is crucial for generating the maximum power. In order to provide a possible solution for this requirement, this paper proposes a control strategy called Quadrature Voltage Compensation, which allows a wide range of power imbalances. The proposed control strategy regulates the power by introducing a circulating current between the arms and a phase angle in the output voltage. The impact of the circulating current and its effect on the phase voltage are studied. To highlight the features of the proposed strategy, an analytical model based on vector superposition is also described, demonstrating the strong capability of tolerating power differences. Finally, to validate the effectiveness of the Quadrature Voltage Compensation, simulation and experimental results are presented for a three-phase isolated multi-modular converter.


2021 ◽  
Vol 1871 (1) ◽  
pp. 012024
Author(s):  
Congcong Li ◽  
Qing Wang ◽  
Hongxia Zhu ◽  
Xinping Wang ◽  
Chao Yu

Sign in / Sign up

Export Citation Format

Share Document