A decoupled flexure-based rotary micropositioning stage with compact size

Author(s):  
Xiaobo Zhu ◽  
Zhijie Wen ◽  
Guozhen Chen ◽  
Jiaxin Liang ◽  
Pinkuan Liu

This paper presents the design and analysis of a novel compact flexure-based rotary micropositioning stage driven by piezoelectric actuator. The developed stage possesses a double four-bar rotary mechanism with rotational symmetric configuration and totally kinematic decoupling, which can convert the linear motion of the piezoelectric actuator into the pure rotational motion, significantly minimizing the parasitic error at the rotation center. Based on the configuration, a single piezoelectric actuator is employed to drive the stage, avoiding actuator redundancy and large configuration size. Meanwhile, we introduce a compliant rotational guiding mechanism to enhance the rotational stiffness and dynamics of the stage. Analytical modeling and finite element analysis are adopted to facilitate the design of dimension. Finally, a prototype of the stage is manufactured and tested, which is capable of a rotational angle of [Formula: see text] with the first natural frequency of 430 Hz, whilst the well-constrained maximum center shift along the X- and Y-axis are 0.29 µm and 0.12 µm, respectively, indicating good decoupling capability. Furthermore, the compact size of [Formula: see text] is beneficial for limited working space.

Author(s):  
Yanbin Yao ◽  
Shusheng Bi ◽  
Hongzhe Zhao

Annulus-shaped flexural pivots (ASFP), composed of three or more identical leaves that are symmetrically arrayed in an annulus, can be used widely in compliant mechanisms for their excellent performances. This paper proposes the accurate load-rotation models of ASFP with three straight leaves, which include the load cases of bending moment combined with horizontal force and vertical force. Firstly, the load-rotation models of ASFP are derived based on the Beam Constraint Model (BCM). Then, the rotational stiffness and buckling characteristics are analyzed based on the derived models. Finally, the accuracy of the models is validated by the finite element analysis (FEA). The relative error of the load-rotation models is within 7% for various load cases even if the rotational angle reaches 0.07 (4°). The results show that the models are accurate enough to be used for initial parametric designing of ASFP.


2018 ◽  
Vol 10 (3) ◽  
Author(s):  
Yan Xie ◽  
Jingjun Yu ◽  
Hongzhe Zhao

Compliant universal joints have been widely employed in high-precision fields due to plenty of good performance. However, the stiffness characteristics, as the most important consideration for compliant mechanisms, are rarely involved. In this paper, a deterministic design for a constraint-based compliant parallel universal joint with constant rotational stiffness is presented. First, a constant stiffness realization principle is proposed by combination of the freedom and constraint topology (FACT) method and beam constraint model (BCM) to establish a mapping relationship between stiffness characteristics and topology configurations. A parallel universal joint topology is generated by the constant stiffness realization principle. Then, the analytical stiffness model of the universal joint with some permissible approximations is formulated based on the BCM, and geometrical prerequisites are derived to achieve the desired constant rotational stiffness. After that, finite element analysis (FEA), experimental testing, and detailed stiffness analysis are carried out. It turns out that the rotational stiffness of the universal joint can keep constant with arbitrary azimuth angles even if the rotational angle reaches up to ±5 deg. Meanwhile, the acceptable relative errors of rotational stiffness are within 0.53% compared with the FEA results and 2.6% compared with the experimental results, which indicates the accuracy of the theoretical stiffness model and further implies the feasibility of constant stiffness realization principle on guiding the universal joint design.


Author(s):  
Jing Zhang ◽  
Hong-wei Guo ◽  
Juan Wu ◽  
Zi-ming Kou ◽  
Anders Eriksson

In view of the problems of low accuracy, small rotational angle, and large impact caused by flexure joints during the deployment process, an integrated flexure revolute (FR) joint for folding mechanisms was designed. The design was based on the method of compliance and stiffness ellipsoids, using a compliant dyad building block as its flexible unit. Using the single-point synthesis method, the parameterized model of the flexible unit was established to achieve a reasonable allocation of flexibility in different directions. Based on the single-parameter error analysis, two error models were established to evaluate the designed flexure joint. The rotational stiffness, the translational stiffness, and the maximum rotational angle of the joints were analyzed by nonlinear finite element analyses. The rotational angle of one joint can reach 25.5° in one direction. The rotational angle of the series FR joint can achieve 50° in one direction. Experiments on single and series flexure joints were carried out to verify the correctness of the design and analysis of the flexure joint.


2008 ◽  
Vol 75 (3) ◽  
Author(s):  
Peter J. Ryan ◽  
George G. Adams ◽  
Nicol E. McGruer

In beam theory, constraints can be classified as fixed/pinned depending on whether the rotational stiffness of the support is much greater/less than the rotational stiffness of the freestanding portion. For intermediate values of the rotational stiffness of the support, the boundary conditions must account for the finite rotational stiffness of the constraint. In many applications, particularly in microelectromechanical systems and nanomechanics, the constraints exist only on one side of the beam. In such cases, it may appear at first that the same conditions on the constraint stiffness hold. However, it is the purpose of this paper to demonstrate that even if the beam is perfectly bonded on one side only to a completely rigid constraining surface, the proper model for the boundary conditions for the beam still needs to account for beam deformation in the bonded region. The use of a modified beam theory, which accounts for bending, shear, and extensional deformation in the bonded region, is required in order to model this behavior. Examples are given for cantilever, bridge, and guided structures subjected to either transverse loads or residual stresses. The results show significant differences from the ideal bond case. Comparisons made to a three-dimensional finite element analysis show a good agreement.


2020 ◽  
Vol 41 (1) ◽  
Author(s):  
Apai Benchaphong ◽  
Rattanasak Hongthong ◽  
Sutera Benchanukrom ◽  
Nirut Konkong

The purpose of this research was to study the behavior of cold-formed steel cantilever truss structures. A cantilever truss structure and bolt-moment connection were tested and verified by the 3D-finite element model. The verification results showed a good correlation between an experimental test and finite element analysis. An analytical method for elastic rotational stiffness of bolt-moment connection was proposed. The equation proposed in the analytical method was used to approximate the elastic rotational stiffness of the bolt group connection, and was also applied to the Richard-Abbott model for generating the nonlinear moment-rotation curve which modeled the semi-rigid connection stiffness. The 2D-finite element analysis was applied to study the behavior of the truss connection, caused by semi-rigid connection stiffness which caused a change of force to the truss elements. The results showed that the force in the structural members increased by between 13.62%-74.32% of the axial forces, and the bending moment decreased by between 33.05%-100%. These results strongly suggest that the semi-rigid connection between cold-formed steel cantilever truss structures should be considered in structural analysis to achieve optimum design, acknowledging this as the real behavior of the structure.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Guiyue Kou ◽  
Mouyou Lin ◽  
Changbao Chu

In the MEMS optical switch assembly, the collision is likely to happen between the optical fiber and the U-groove of the chip due to the uncontrollable assembly errors. However, these errors can hardly be completely eliminated by the active control using high precision sensors and actuators. It will cause the large acting force and part damage, which further leads to the assembly failure. To solve this question, this paper presents a novel low-cost three-degree-of-freedom (three-DOF) passive flexure system to adaptively eliminate the planar assembly errors. The flexure system adopts three parallel kinematic chains with a novel 3-RPR structure and has a compact size with a diameter of 125 mm and thickness of 12 mm. A novel eddy current damper with the structure of Halbach array permanent magnets (PMs) is utilized to suppress the adverse mechanical vibration of the assembly system from the background disturbances. Analytical models are established to analyze the kinematic, static, and dynamic performances of the system in detail. Finally, finite element analysis is adopted to verify the established models for optimum design. The flexure system can generate a large deformation of 1.02 mm along the two translational directions and 0.02° along the rotational direction below the yield state of the material, and it has much higher natural frequencies than 200 Hz. Moreover, the large damping force means that the designed ECD can suppress the system vibration quickly. The above results indicate the excellent characteristics of the assembly system that will be applied into the optical switch assembly.


Author(s):  
Vladimir Portman

New stiffness performance indices using the collinear stiffness value (CSV) associated with a given configuration in a working space of the machine are proposed. The CSV and its partial cases — a translational stiffness value (TSV), a rotational stiffness value (RSV), and a screw stiffness value (SSV) — have a simple and direct physical interpretation: the CSV is non-negative in singular configuration and positive in regular configurations. As a result, the minimal values of the CSV can be successfully applied to stiffness-related evaluations for all (i.e., both singular and regular) configurations. Similar to a determinant, the minimal CSV equals zero if and only if its associated configuration is singular. In regular configurations, the minimal CSV is applied to evaluation of local stiffness for a given configuration and global stiffness in the working space, wherein the established stiffness limitations are satisfied. Procedures for evaluation of the minimal CSV are developed. As an example, the absolute CSV of the Gough-Stewart platform and its relative stiffness in comparison with serial-type mechanisms are simulated. The proposed approach can be used as an effective design tool for evaluation and limitation of stiffness of machines and robots.


2013 ◽  
Vol 838-841 ◽  
pp. 540-544 ◽  
Author(s):  
Jian Rong Pan ◽  
Zhan Wang ◽  
Lin Qiang Zheng ◽  
Zheng Ting Yang

Beam-column connection with cantilever beam bolted-splicing is also known as the joint of column-tree moment-resisting frame. The study is still relatively small for the semi-rigid behavior and rotational stiffness of the joint. This paper deal with four specimens of the joints with cantilever beam splicing and four specimens of the welded joints by using three dimensional finite element model analysis. The strain, stress, yield and ultimate loads, yield and ultimate deformations had been compared between the joint with cantilever beam splicing and the welded joint. The analysis results show that, when the splicing area of the joint with cantilever beam splicing was designed more strongly, the stress distribution, the load-displacement curves in elastic working stage, and the initial rotational stiffness are good agreement between the joint with cantilever beam splicing and the welded joint. The hysteresis curves of the joint with cantilever beam splicing were inverse S-shaped, indicating that there was greater slipping deformation because of bolt splicing. The welded joint had no slipping phenomenon.


Author(s):  
Guangbo Hao ◽  
John Mullins

Bistable mechanisms have two stable positions and their characteristic analysis is much harder than the traditional spring system due to their postbuckling behaviour. As the strong nonlinearity induced by the postbuckling, it is difficult to establish a correct model to reveal the comprehensive nonlinear characteristics. This paper deals with the in-plane comprehensive static analysis of a translational bistable mechanism using nonlinear finite element analysis. The bistable mechanism consists of a pair of fixed-clamped inclined beams in symmetrical arrangement, which is a monolithic design and works within the elastic deformation domain. The displacement-controlled finite element analysis method using Strand7 is first discussed. Then the force–displacement relation of the bistable mechanism along the primary motion direction is described followed by the detailed primary translational analysis for different parameters. A simple analytical (empirical) equation for estimating the negative stiffness is obtained, and experimental testing is performed for a case study. It is concluded that (a) the negative stiffness magnitude has no influence from the inclined angle, but is proportional to the product of the Young’s modulus, beam depth, and cubic ratio for in-plane thickness to the beam length; (b) the unstable position is proportional to the product of the beam length and the Sine function of the inclined angle, and is not affected by the in-plane thickness and the material (or the out-of-plane thickness). The in-plane off-axis (translational and rotational) stiffness is further analysed to show the stiffness changes over the primary motion and the off-axis motion, and a negative rotational stiffness domain has been obtained.


2012 ◽  
Vol 28 (2-3) ◽  
pp. 123-131 ◽  
Author(s):  
Man-Soon Yoon ◽  
Neamul Hayet Khansur ◽  
Kyung-Sun Lee ◽  
Young Min Park

Sign in / Sign up

Export Citation Format

Share Document