Imperfection sensitivity in the vibration behavior of functionally graded arches by considering microstructural defects

Author(s):  
Mohammad Amir ◽  
Mohammad Talha

In this paper, imperfection sensitivity in the vibration behavior of functionally graded arches with microstructural defects (porosity) has been studied. The temperature-dependent material properties of functionally graded arches are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. The formulations are based on the Reddy’s higher order shear deformation theory using finite element method. Convergence and comparison studies have been performed to describe the efficacy of the present formulation. The obtained results have been compared with the limited available literature. The parametric studies have been performed to study the influence of the temperature rise, volume fraction index, and porosity index on the frequency response of the functionally graded arches. The effect of various modes of initial geometrical imperfections has also been examined. The obtained numerical results can be used as benchmark solutions for future researches in this field of study.

2018 ◽  
Vol 18 (11) ◽  
pp. 1850135 ◽  
Author(s):  
Mohammad Amir ◽  
Mohammad Talha

In the present study, the thermoelastic vibration of shear deformable functionally graded material (FGM) curved beams with microstructural defects (porosity) has been analyzed by the finite element method. The formulation is based on the higher-order shear deformation theory. The material properties of FGM beams are allowed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Even and uneven distributions of porosities in the beam have been considered with temperature-dependent material properties. Comparison and convergence study has been performed to validate the present formulation. Parametric studies have been done to study the effect of different influencing parameters on the frequency of the FGM curved beam, i.e. porosity, temperature rise, volume fraction index and opening angle. Some new results are presented which can be used as benchmark solutions for future research.


Author(s):  
Pham Hoang Anh ◽  
Tran Thuy Duong

In this article, an efficient numerical approach for weight optimisation of functionally graded (FG) beams in the presence of frequency constraints is presented. For the analysis purpose, a finite element (FE) solution based on the first order shear deformation theory (FSDT) is established to analyse the free vibration behaviour of FG beams. A four-parameter power law distribution and a five-parameter trigonometric distribution are used to describe the volume fraction of material constituents in the thickness direction. The goal is to tailor the thickness and material distribution for minimising the weight of FG beams while constraining the fundamental frequency to be greater than a prescribed value. The constrained optimisation problem is effectively solved by a novel differential evolution (DE) algorithm. The validity and efficiency of the proposed approach is demonstrated through two numerical examples corresponding to the four-parameter distribution and the five-parameter distribution.Keywords: FGM beam; lightweight design; frequency constraint; differential evolution.


2010 ◽  
Vol 19 (2) ◽  
pp. 096369351001900 ◽  
Author(s):  
F. Ebrahimi ◽  
H.A. Sepiani

In this study, a formulation for the free vibration and buckling of cylindrical shells made of functionally graded material (FGM) subjected to combined static and periodic axial loadings are presented. The properties are temperature dependent and graded in the thickness direction according to a volume fraction power law distribution. The analysis is based on two different methods of first-order shear deformation theory (FSDT) considering the transverse shear strains and the rotary inertias and the classical shell theory (CST). The results obtained show that the effect of transverse shear and rotary inertias on vibration and buckling of functionally graded cylindrical shells is dependent on the material composition, the temperature environment, the amplitude of static load, the deformation mode, and the shell geometry parameters.


Author(s):  
Vishesh Ranjan Kar ◽  
Subrata Kumar Panda

Free vibration responses of functionally graded spherical shell panels are investigated in the present article. A general mathematical model is developed based on higher order shear deformation theory mid-plane kinematics. The effective material properties are graded in the thickness direction according to a power-law distribution and it varies continuously from metal (bottom surface) to ceramic (top surface). The model is discretized using a nine noded quadrilateral Lagrangian element. A convergence test has been done with different mesh refinement and compared with the available published results. In addition to that the present study includes an ANSYS model check with the developed mathematical model to show the efficacy. New results are computed for different parameters such as volume fraction, thickness ratio, curvature ratio and support conditions which indicates the effect of parametric study on non-dimensional frequency parameters.


2019 ◽  
Vol 11 (03) ◽  
pp. 1950025 ◽  
Author(s):  
Mohammed Shakir ◽  
Mohammad Talha

This paper presents the influence of various random system parameters on dynamics response of imperfection sensitive higher order shear deformable functionally graded material (FGM) plates. Young’s moduli, Poisson’s ratio and volume fraction index are considered as random system parameters. The material properties of the FGM plates are assumed to vary along the thickness direction using simple power-law distribution in terms of the volume fraction of the constituents. The plate kinematics is based on Reddy’s higher order shear deformation theory. Finite element method (FEM) is employed in conjunction with first-order perturbation technique (FOPT) and Newmark integration scheme to explore the influence of different system parameters, like volume fraction indices, aspect ratio, material uncertainties, and imperfection amplitude on the dynamic responses of the FGM plates.


2019 ◽  
Vol 19 (03) ◽  
pp. 1950028 ◽  
Author(s):  
S. J. Singh ◽  
S. P. Harsha

In the present study, free vibration and buckling characteristics of a sandwich functionally graded material (FGM) plate resting on the Pasternak elastic foundation have been investigated. The formulation is based on non-polynomial higher-order shear deformation theory with inverse hyperbolic shape function. A new modified sigmoid law is presented to compute the effective material properties of sandwich FGM plate. The governing equilibrium equations have been derived using Hamilton’s principle. Non-dimensional frequencies and critical buckling loads are evaluated by considering different boundary conditions based on admissible functions satisfying the desired primary and secondary variables. Comprehensive parametric studies have been performed to analyze the influence of geometric configuration, volume fraction exponent, elastic medium parameter, and non-dimensional load parameter on the non-dimensional frequency and critical buckling load. These parametric studies have been done for various boundary conditions and different configurations of the sandwich plate. The computed results can be used as a benchmark for future comparison of sandwich S-FGM plates.


2013 ◽  
Vol 2013 ◽  
pp. 1-33 ◽  
Author(s):  
Francesco Tornabene ◽  
Alessandro Ceruti

This study deals with a mixed static and dynamic optimization of four-parameter functionally graded material (FGM) doubly curved shells and panels. The two constituent functionally graded shell consists of ceramic and metal, and the volume fraction profile of each lamina varies through the thickness of the shell according to a generalized power-law distribution. The Generalized Differential Quadrature (GDQ) method is applied to determine the static and dynamic responses for various FGM shell and panel structures. The mechanical model is based on the so-called First-order Shear Deformation Theory (FSDT). Three different optimization schemes and methodologies are implemented. The Particle Swarm Optimization, Monte Carlo and Genetic Algorithm approaches have been applied to define the optimum volume fraction profile for optimizing the first natural frequency and the maximum static deflection of the considered shell structure. The optimization aim is in fact to reach the frequency and the static deflection targets defined by the designer of the structure: the complete four-dimensional search space is considered for the optimization process. The optimized material profile obtained with the three methodologies is presented as a result of the optimization problem solved for each shell or panel structure.


2020 ◽  
Vol 12 (01) ◽  
pp. 2050003 ◽  
Author(s):  
S. Hashemi ◽  
A. A. Jafari

In this research, the nonlinear free vibrations analysis of functionally graded (FG) rectangular plate which simply supported all edges are investigated analytically using modified Lindstedt–Poincare (MLP) method for the first time. For this purpose, with the aid of von Karman nonlinearity strain-displacement relations, the partial differential equations of motion are developed based on first-order shear deformation theory (FSDT). Afterward, by applying Galerkin method, the nonlinear partial differential equations are transformed into the time-dependent nonlinear ordinary differential equations. The nonlinear equation of motion is then solved analytically by MLP method to determine the nonlinear frequencies of the FG rectangular plate. The material properties are assumed to be graded through the direction of plate thickness according to power law distribution. The effects of some system parameters such as vibration amplitude, volume fraction index and aspect ratio on the nonlinear to linear frequency ratio are discussed in detail. To validate the analysis, the results of this paper are compared with both the published data and numerical method, and good agreements are found.


2009 ◽  
Vol 01 (04) ◽  
pp. 667-707 ◽  
Author(s):  
ASHRAF M. ZENKOUR

A thermomechanical bending analysis for a simply supported, rectangular, functionally graded material sandwich plate subjected to a transverse mechanical load and a through-the-thickness thermal load is presented using the refined sinusoidal shear deformation plate theory. The present shear deformation theory includes the effect of both shear and normal deformations and it is simplified by enforcing traction-free boundary conditions at the plate faces. Material properties and thermal expansion coefficient of the sandwich plate faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The equilibrium equations of different sandwich plates are given based on various plate theories. A number of examples are solved to illustrate the numerical results concern thermo-mechanical bending response of functionally graded rectangular sandwich plates. The influences played by transversal shear and normal deformations, plate aspect ratio, side-to-thickness ratio, volume fraction distributions, and thermal and mechanical loads are investigated.


The following study explored the free vibration characteristics of a rectangular spherical shell. An efficient formulation developed Higher-order shear deformation theory (HSDT), conjunction with the numerical procedure (FEM). To determine the desired volume fraction obtained through the Four-parameter power-law distribution considered on the top surface is ceramic-rich. In contrast, the base surface is metal-rich. Parameters distribution gives design flexibility and different kinds of material profiles exhibited. The efficiency of the model is verified by performing convergence studies and comparison tests. The numerical results compared with earlier available literature solutions to authenticate the stability and exactness of the current approach, and good agreement perceived. Illustrated numerical examples to find the influence on the appropriate selection of the four-parameters, the mechanical behavior of the composition and effects on geometrical parameters, skew angles, different boundary conditions on their non-dimensional frequency responses examined in detail


Sign in / Sign up

Export Citation Format

Share Document