An analytical approach for vibration analysis of laminated orthotropic beam based on nonlocal theory

Author(s):  
Saeed Khadem Moshir ◽  
Hamidreza Eipakchi

On the basis of the first-order shear deformation beam theory, free vibrations and dynamic response of orthotropic laminated beam subjected to transient and harmonic loading have been studied based on Eringen’s nonlocal elasticity theory. Three coupled nonlinear governing partial differential equations of motion are derived using Hamilton’s principle. The purely analytical perturbation method as well as the method of multiple scales are used for the solution. A parametric study is carried out to realize the effect of small-scale and axial static load on the natural frequencies, transient, and harmonic responses. In addition, the obtained results have been compared with numerical solutions and literature.

2021 ◽  
Author(s):  
Reza Mohammadi

Abstract In this paper, the nonlinear vibration analysis of the nanobeams subjected to magneto-electro-thermo loading based on a novel HSDT is studied. Nonlocal elasticity theory is applied to consider the small scale effect. The nonlinear equations of motion are derived using Hamilton’s principle. First, a Galerkin-based numerical technique is applied to reduce the nonlinear governing equation into a set of Duffing-type time-dependent differential equations. Afterward, the analytical solutions are derived based on the method of multiple scales (MMS) and perturbation technique. All of the mechanical properties of the beam are temperature dependent. The impacts of the several variables are investigated on the nonlinear frequency ratio of the nanobeams. The results illustrate that when maximum deflection is smaller/ greater than 0.2, its impact on the nonlinear frequency ratio will decrease/increase.


Author(s):  
Jan Awrejcewicz ◽  
Grzegorz Kudra ◽  
Olga Mazur

AbstractParametric vibrations of the single-layered graphene sheet (SLGS) are studied in the presented work. The equations of motion govern geometrically nonlinear oscillations. The appearance of small effects is analysed due to the application of the nonlocal elasticity theory. The approach is developed for rectangular simply supported small-scale plate and it employs the Bubnov–Galerkin method with a double mode model, which reduces the problem to investigation of the system of the second-order ordinary differential equations (ODEs). The dynamic behaviour of the micro/nanoplate with varying excitation parameter is analysed to determine the chaotic regimes. As well the influence of small-scale effects to change the nature of vibrations is studied. The bifurcation diagrams, phase plots, Poincaré sections and the largest Lyapunov exponent are constructed and analysed. It is established that the use of nonlocal equations in the dynamic analysis of graphene sheets leads to a significant alteration in the character of oscillations, including the appearance of chaotic attractors.


2021 ◽  
pp. 107754632110511
Author(s):  
Arameh Eyvazian ◽  
Chunwei Zhang ◽  
Farayi Musharavati ◽  
Afrasyab Khan ◽  
Mohammad Alkhedher

Treatment of the first natural frequency of a rotating nanocomposite beam reinforced with graphene platelet is discussed here. In regard of the Timoshenko beam theory hypothesis, the motion equations are acquired. The effective elasticity modulus of the rotating nanocomposite beam is specified resorting to the Halpin–Tsai micro mechanical model. The Ritz technique is utilized for the sake of discretization of the nonlinear equations of motion. The first natural frequency of the rotating nanocomposite beam prior to the buckling instability and the associated post-critical natural frequency is computed by means of a powerful iteration scheme in reliance on the Newton–Raphson method alongside the iteration strategy. The impact of adding the graphene platelet to a rotating isotropic beam in thermal ambient is discussed in detail. The impression of support conditions, and the weight fraction and the dispersion type of the graphene platelet on the acquired outcomes are studied. It is elucidated that when a beam has not undergone a temperature increment, by reinforcing the beam with graphene platelet, the natural frequency is enhanced. However, when the beam is in a thermal environment, at low-to-medium range of rotational velocity, adding the graphene platelet diminishes the first natural frequency of a rotating O-GPL nanocomposite beam. Depending on the temperature, the post-critical natural frequency of a rotating X-GPL nanocomposite beam may be enhanced or reduced by the growth of the graphene platelet weight fraction.


Author(s):  
Vahid Mohamadhashemi ◽  
Amir Jalali ◽  
Habib Ahmadi

In this study, the nonlinear vibration of a curved carbon nanotube conveying fluid is analyzed. The nanotube is assumed to be covered by a piezoelectric layer and the Euler–Bernoulli beam theory is employed to establish the governing equations of motion. The influence of carbon nanotube curvature on structural modeling and fluid velocity vector is considered and the slip boundary conditions of CNT conveying fluid are included. The mathematical modeling of the structure is developed using Hamilton’s principle and then, the Galerkin procedure is employed to discretize the equation of motion. Furthermore, the frequency response of the system is extracted by applying the multiple scales method of perturbation. Finally, a comprehensive study is carried out on the primary resonance and piezoelectric-based parametric resonance of the system. It is shown that consideration of nanotube curvature may lead to an increase in nonlinearity. Implementing the fluid velocity vector in which nanotube curvature is included highly affects the maximum amplitude of the response and should not be ignored. Furthermore, different system parameters have evident impacts on the behavior of the system and therefore, selecting the reasonable geometrical and physical parameters of the system can be very useful to achieve a favorable response.


2014 ◽  
Vol 11 (06) ◽  
pp. 1350085 ◽  
Author(s):  
SOUMIA BENGUEDIAB ◽  
ABDELWAHED SEMMAH ◽  
FOUZIA LARBI CHAHT ◽  
SOUMIA MOUAZ ◽  
ABDELOUAHED TOUNSI

In the present study, a nonlocal hyperbolic shear deformation theory is developed for the static flexure, buckling and free vibration analysis of nanobeams using the nonlocal differential constitutive relations of Eringen. The theory, which does not require shear correction factor, accounts for both small scale effects and hyperbolic variation of shear strains and consequently shear stresses through the thickness of the nanobeam. The equations of motion are derived from Hamilton's principle. Analytical solutions for the deflection, buckling load and natural frequency are presented for a simply supported nanobeam, and the obtained results are compared with those predicted by the nonlocal Timoshenko beam theory and Reddy beam theories. Present solutions can be used for the static and dynamic analyses of single-walled carbon nanotubes.


2019 ◽  
Vol 24 (3) ◽  
pp. 520-530
Author(s):  
Malesela K. Moutlana ◽  
Sarp Adali

The fundamental frequencies of an elastically restrained nanobeam with a tip mass are studied based on the nonlocal Euler-Bernoulli beam theory. The nanobeam has a torsional spring at one end and a translational spring at the other end where a tip mass is attached. The aim is to model a tapping mode atomic force microscope (TM-AFM), which can be utilized in imaging and the manufacture of Nano-scale structures. A TM-AFM uses high frequency oscillations to remove material, shape structures or scan the topology of a Nano-scale structure. The nonlocal theory is effective at modelling Nano-scale structures, as it takes small scale effects into account. Torsional elastic restraints can model clamped and pinned boundary conditions, as their stiffness values change between zero and infinity. The effects of the stiffness of the elastic restraints, tip mass and the small-scale parameter on the fundamental frequency are investigated numerically.


2011 ◽  
Vol 415-417 ◽  
pp. 760-763
Author(s):  
Cheng Li ◽  
Wei Guo Huang ◽  
Lin Quan Yao

The vibrational characteristics of cantilever beams with initial axial tension were studied using a nonlocal continuum Euler-Bernoulli beam model. Small size effects are essential to nanotechnology and it can not be ignored in micro or nano scale. Nonlocal elasticity theory has been proved to work well in nanomechanics and it is considered into the governing equation which can be transformed into a fourth-order ordinary differential equation together with a dispersion relation. Boundary conditions are applied so as to determine the analytical solutions of vibrational mode shape and transverse deformation through a numerical method. Relations between natural frequency and the small scale parameter are obtained, including the fundamental and the second order frequencies. It is found that both the small scale parameter and dimensionless initial axial tension play remarkable roles in dynamic behaviors of micro cantilever beams and their effects are analyzed and discussed in detail.


2013 ◽  
Vol 12 (04) ◽  
pp. 1350025 ◽  
Author(s):  
ABDELOUAHED TOUNSI ◽  
SOUMIA BENGUEDIAB ◽  
MOHAMMED SID AHMED HOUARI ◽  
ABDELWAHED SEMMAH

This paper presents a new nonlocal thickness-stretching sinusoidal shear deformation beam theory for the static and vibration of nanobeams. The present model incorporates the length scale parameter (nonlocal parameter) which can capture the small scale effect, and it accounts for both shear deformation and thickness stretching effects by a sinusoidal variation of all displacements through the thickness without using shear correction factor. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion of the nanobeam are derived using Hamilton's principle. The effects of nonlocal parameter, aspect ratio and the thickness stretching on the static and dynamic responses of the nanobeam are discussed. The theoretical development presented herein may serve as a reference for nonlocal theories as applied to the bending and dynamic behaviors of complex-nanobeam-system such as complex carbon nanotube system.


Author(s):  
M Moradi Tiaki ◽  
SAA Hosseini ◽  
H Shaban Ali Nezhad

In this paper, nonlinear free vibration of a cantilever flexible shaft carrying a rigid disk at its free end (overhung rotor) is investigated. The Rayleigh beam model is used and the rotor has large amplitude vibrations. With the assumption of inextensibility, the effect of nonlinear curvature and inertia is considered. The effect of disk mass on the dynamical behavior of the system is studied in the presence and absence of gravity (horizontal and vertical rotors). By using perturbation technique (method of multiple scales), the main focus is on the influence of gravity on equations of motion and on quantities such as amplitude and damped natural frequency. Here, a different behavior is observed due to the rotor weight. Indeed, the combination effects of gyroscopic term, nonlinearity and gravity are studied on the modal behavior of the system. It is shown that the static deflection creates second order nonlinear terms and changes the nonlinear damped natural frequency. With considering of gravity, both beat and high frequency in beat phenomenon increase. With increasing of the rotor weight, the minimum value of amplitude is extremely amplified in the direction of gravity but in the other transverse direction, amplitude of vibrations decreases. In addition, it is found that the weight has directly influence on beat frequency, while the mass ratio between disk and beam affects the high frequency.


Author(s):  
Huu-Tai Thai ◽  
Thuc P Vo ◽  
Trung-Kien Nguyen ◽  
Jaehong Lee

A nonlocal sinusoidal plate model for micro/nanoscale plates is developed based on Eringen’s nonlocal elasticity theory and sinusoidal shear deformation plate theory. The small-scale effect is considered in the former theory while the transverse shear deformation effect is included in the latter theory. The proposed model accounts for sinusoidal variations of transverse shear strains through the thickness of the plate, and satisfies the stress-free boundary conditions on the plate surfaces, thus a shear correction factor is not required. Equations of motion and boundary conditions are derived from Hamilton’s principle. Analytical solutions for bending, buckling, and vibration of simply supported plates are presented, and the obtained results are compared with the existing solutions. The effects of small scale and shear deformation on the responses of the micro/nanoscale plates are investigated.


Sign in / Sign up

Export Citation Format

Share Document