scholarly journals Aero-engine blade profile reconstruction based on adaptive step size bat algorithm and visualization of machining error

Author(s):  
Zhi Huang ◽  
Pengxuan Wei ◽  
Chao Li ◽  
Hongyan Wang ◽  
Jingyi Wang

High-precision profile reconstruction is a key issue in the profile detection and visualization of aero-engine blades. A method based on adaptive step size bat algorithm (ASSBA) for blade profile reconstruction and an adaptive mesh model for visualization analysis of the key machining errors are proposed. Firstly, the original bat algorithm (BA) is improved to introduce the global stage and local search stage. Then, combined with the node layer characteristics of the blade measurement data, the ASSBA is used to fit the optimal surface. Further, the adaptive mesh is planned on the blade profile to extract various evaluation parameters. Finally, the algorithm analysis and verification are carried out based on a certain type of blade. The results show this reconstruction method can get the fitted surface more quickly and accurately than other iterative methods. Simultaneously, the visualization method and corresponding software system can intuitively visualize the blade profile error, the twist deformation error, the swept deformation error, the bending deformation error and the cross-section line profile error.

2012 ◽  
Vol 16 (S3) ◽  
pp. 355-375 ◽  
Author(s):  
Olena Kostyshyna

An adaptive step-size algorithm [Kushner and Yin,Stochastic Approximation and Recursive Algorithms and Applications, 2nd ed., New York: Springer-Verlag (2003)] is used to model time-varying learning, and its performance is illustrated in the environment of Marcet and Nicolini [American Economic Review93 (2003), 1476–1498]. The resulting model gives qualitatively similar results to those of Marcet and Nicolini, and performs quantitatively somewhat better, based on the criterion of mean squared error. The model generates increasing gain during hyperinflations and decreasing gain after hyperinflations end, which matches findings in the data. An agent using this model behaves cautiously when faced with sudden changes in policy, and is able to recognize a regime change after acquiring sufficient information.


Author(s):  
Shuo Peng ◽  
A.-J. Ouyang ◽  
Jeff Jun Zhang

With regards to the low search accuracy of the basic invasive weed optimization algorithm which is easy to get into local extremum, this paper proposes an adaptive invasive weed optimization (AIWO) algorithm. The algorithm sets the initial step size and the final step size as the adaptive step size to guide the global search of the algorithm, and it is applied to 20 famous benchmark functions for a test, the results of which show that the AIWO algorithm owns better global optimization search capacity, faster convergence speed and higher computation accuracy compared with other advanced algorithms.


Author(s):  
Alfredo Bonini Neto ◽  
Luis Roberto Almeida Gabriel Filho ◽  
Dilson Amancio Alves

Sign in / Sign up

Export Citation Format

Share Document