A simulation-based study on the effect of underwater friction stir welding process parameters using different evolutionary optimization algorithms

Author(s):  
Mohd A Wahid ◽  
Sarfaraz Masood ◽  
Zahid A Khan ◽  
Arshad N Siddiquee ◽  
Irfan A Badruddin ◽  
...  

This paper investigates the effect of underwater friction stir welding process parameters on the mechanical properties of the aluminum alloy 6082-T6 joint and further simulates this process using various evolutionary optimization algorithms. Three independent underwater friction stir welding process parameters, i.e. shoulder diameter (in mm) at two levels, rotational speed (in r/min) at three levels, and traverse speed (in mm/min) also at three levels, were varied according to the Taguchi’s L18 standard orthogonal array. The effect of variations in these parameters, on the ultimate tensile strength (in MPa), percentage elongation (in %), and impact strength (in J) of the welded joint was experimentally measured and recorded. In order to simulate this underwater friction stir welding process, three evolutionary optimization algorithms, i.e. particle swarm optimization, firefly optimization, and non-dominated sorting established on the genetic algorithm (NSGA-II), were employed. In these simulations, an artificial neural network with two layers, resembling a non-linear function, was employed as the cost function to predict the values of the response variables, i.e. ultimate tensile strength, elongation, and impact strength, which were experimentally measured earlier. In these simulations, several experiments were conducted using different randomly selected data set and subsequently, the accuracy of each individual simulation was compared. Results revealed that the firefly optimization-based simulation performed the best with least mean squared error while predicting the response variable values, as compared to the particle swarm optimization and the NSGA-II. The minimum value of the mean squared error for the firefly optimization-based simulation was observed to be as low as 0.009%, 0.004%, and 0.017% for ultimate tensile strength, elongation and impact strength, respectively. Furthermore, it was also observed that the computational time for the firefly optimization-based simulation was significantly lower than that of both particle swarm optimization and NSGA-II-based simulations.

Author(s):  
R Palanivel ◽  
RF Laubscher ◽  
S Vigneshwaran ◽  
I Dinaharan

Friction stir welding is a solid-state welding technique for joining metals such as aluminum alloys quickly and reliably. This article presents a design of experiments approach (central composite face–centered factorial design) for predicting and optimizing the process parameters of dissimilar friction stir welded AA6351–AA5083. Three weld parameters that influence weld quality were considered, namely, tool shoulder profile (flat grooved, partial impeller and full impeller), rotational speed and welding speed. Experimental results detailing the variation of the ultimate tensile strength as a function of the friction stir welding process parameters are presented and analyzed. An empirical model that relates the friction stir welding process parameters and the ultimate tensile strength was obtained by utilizing a design of experiments technique. The models developed were validated by an analysis of variance. In general, the full impeller shoulder profile displayed the best mechanical properties when compared to the other profiles. Electron backscatter diffraction maps were used to correlate the metallurgical properties of the dissimilar joints with the joint mechanical properties as obtained experimentally and subsequently modeled. The optimal friction stir welding process parameters, to maximize ultimate tensile strength, are identified and reported.


Author(s):  
Mahmoud Abbasi ◽  
Amin Abdollahzadeh ◽  
Behrouz Bagheri ◽  
Ahmad Ostovari Moghaddam ◽  
Farzaneh Sharifi ◽  
...  

Various methods have been proposed to modify the friction stir welding. Friction stir vibration welding and underwater friction stir welding are two variants of this technique. In friction stir vibration welding, the adjoining workpieces are vibrated normal to the joint line while friction stir welding is carried out, while in underwater friction stir welding the friction stir welding process is performed underwater. The effects of these modified versions of friction stir welding on the microstructure and mechanical characteristics of AA6061-T6 aluminum alloy welded joints are analyzed and compared with the joints fabricated by conventional friction stir welding. The results indicate that grain size decreases from about 57 μm for friction stir welding to around 34 μm for friction stir vibration welding and about 23 μm for underwater friction stir welding. The results also confirm the evolution of Mg2Si precipitates during all processes. Friction stir vibration welding and underwater friction stir welding processes can effectively decrease the size and interparticle distance of precipitates. The strength and ductility of underwater friction stir welding and friction stir vibration welding processed samples are higher than those of the friction stir welding processed sample, and the highest strength and ductility are obtained for underwater friction stir welding processed samples. The underwater friction stir welding and friction stir vibration welding processed samples exhibit about 25% and 10% higher tensile strength compared to the friction stir welding processed sample, respectively. The results also indicate that higher compressive residual stresses are developed as underwater friction stir welding and friction stir vibration welding are applied.


2014 ◽  
Vol 597 ◽  
pp. 253-256 ◽  
Author(s):  
Nurul Muhayat ◽  
Triyono ◽  
Bambang Kusharjanta ◽  
Radian T. Handika

The effects of preheat temperature on mechanical properties and the microstructure of friction stir welded (FSW) aluminum alloy 5052 joints were studied in the present work. Heated air from Hot Gun was applied in front of the FSW tool to give the preheat on friction stir welding process. Preheat temperature was set 150°C, 250°C and 300°C. Mechanical properties were correlated and analyzed according to tensile strength, macro and microstructure. Defect free weldswere obtained at all preheat variations. The increasing preheat temperature produced the coarser grain size, it influencedthe little decrease both the tensile strength and hardness of joints.


Sign in / Sign up

Export Citation Format

Share Document