The investigation into vibration effect on microstructure and mechanical characteristics of friction stir spot vibration welded aluminum: Simulation and experiment

Author(s):  
Behrouz Bagheri ◽  
Mahmoud Abbasi ◽  
Reza Hamzeloo

In this study, an innovative technique is employed to modify the microstructure and increase the mechanical characteristics of the Al5083 joint made by friction stir spot welding (FSSW). In this technique entitled FSSVW (friction stir spot vibration welding), the workpiece is vibrated during FSSW. Noted processes were modeled and finite element simulation results were also analyzed. The results showed that workpiece vibration during FSSW led to grain refinement, larger weld region, and improvement of the mechanical properties, namely tensile shear strength and hardness, of the joint. Stir zone grain size decreased by about 25% and tensile shear strength value increased by about 20% by applying workpiece vibration during FSSW. The results also indicated that the tensile shear strength and hardness enhanced, as vibration frequency increased. It was concluded that the presence of vibration increased the material deformation in the stir zone and led to enhanced deformation of the material. This intensified the dynamic recrystallization and resulted in grain refinement. It was also found that tensile residual stresses developed in the stir zone of FSS and FSSV welded specimens and tensile residual stress values for FSSV welded specimens were higher than those for FSS welded specimens for about 10%. It was concluded that the effect of grain size on hardness is higher than the effect of residual stress. Higher ductility is predicted for FSSV welded specimen with higher vibration frequency and also for specimen welded with less dwell time; finite element simulation was also applied to analyze the effects of workpiece vibration during FSSW on strain distribution as well as hardness and residual stress distribution within the joint during FSSW and FSSVW processes. Finite element simulation results had good compatibility with experimental results. It was concluded that the strain values and flow velocity relating to the FSSVW process are higher than those relating to the FSSW process.

2010 ◽  
Vol 24 (3) ◽  
pp. 169-175 ◽  
Author(s):  
Mitsuo Fujimoto ◽  
Daisuke Watanabe ◽  
Natsumi Abe ◽  
Sato S. Yutaka ◽  
Hiroyuki Kokawa

1992 ◽  
Vol 114 (4) ◽  
pp. 441-451 ◽  
Author(s):  
S. Brown ◽  
H. Song

Current simulations of welding distortion and residual stress have considered only the local weld zone. A large elastic structure surrounding a weld, however, can couple with the welding operation to produce a final weld state much different from that resulting when a smaller structure is welded. The effect of this coupling between structure and weld has the potential of dominating the final weld distortion and residual stress state. This paper employs both two-and three-dimensional finite element models of a circular cylinder and stiffening ring structure to investigate the interaction of a large structure on weld parameters such as weld gap clearance (fitup) and fixturing. The finite element simulation considers the full thermo-mechanical problem, uncoupling the thermal from the mechanical analysis. The thermal analysis uses temperature-dependent material properties, including latent heat and nonlinear heat convection and radiation boundary conditions. The mechanical analysis uses a thermal-elastic-plastic constitutive model and an element “birth” procedure to simulate the deposition of weld material. The effect of variations of weld gap clearance, fixture positions, and fixture types on residual stress states and distortion are examined. The results of these analyses indicate that this coupling effect with the surrounding structure should be included in numerical simulations of welding processes, and that full three-dimensional models are essential in predicting welding distortion. Elastic coupling with the surrounding structure, weld fitup, and fixturing are found to control residual stresses, creating substantial variations in highest principal and hydrostatic stresses in the weld region. The position and type of fixture are shown to be primary determinants of weld distortion.


Sign in / Sign up

Export Citation Format

Share Document