Piezoelectric energy harvesting using macro fiber composite patches

Author(s):  
Marwa Mallouli ◽  
Mnaouar Chouchane

Over the last decade, vibration energy harvesting has received substantial attention of many researchers. Piezoelectric materials are able to capture energy from ambient vibration and convert it into electricity which can be stored in batteries or utilized to power small electronic devices. In order to benefit from the 33-mode of the piezoelectric effect, interdigitated electrodes have been utilized in the design of macro fiber composites which are made of piezoelectric fibers of square cross sections embedded into an epoxy matrix material. This paper presents an analytical model of a macro fiber composite bimorph energy harvester using the 33-mode. The mixing rule is applied to determine the equivalent and homogenized properties of the macro fiber composite structures. The electromechanical properties of a representative volume element composed of piezoelectric fibers and an epoxy matrix between two successive interdigitated electrodes are coupled with the overall electro-elastodynamics of the harvester utilizing the Euler–Bernoulli theory. Macro fiber composite bimorph cantilevers with diverse widths are simulated for power generation when a resistive shunt loading is applied. Stress components in the Kapton layers, which are typically a part of any macro fiber composite patch, and in the bonding layers have been included in the model contrary to previously published studies. Variable tip mass, attached at the free end of the beam, is utilized in this paper to tune the resonance frequency of the harvester. The generated power at the fundamental short circuit and open circuit resonance frequencies of harvesters having three different widths is analyzed. It has been observed that higher electrical outputs are produced by the wider macro fiber composite bimorph using (M8528-P1 patches).

2016 ◽  
Vol 28 (12) ◽  
pp. 1575-1588 ◽  
Author(s):  
Shima Shahab ◽  
Alper Erturk

Piezoelectric structures have been used in a variety of applications ranging from vibration control and sensing to morphing and energy harvesting. In order to employ the effective 33-mode of piezoelectricity, interdigitated electrodes have been used in the design of macro-fiber composites which employ piezoelectric fibers with rectangular cross section. In this article, we present an investigation of the two-way electroelastic coupling (in the sense of direct and converse piezoelectric effects) in bimorph cantilevers that employ interdigitated electrodes for 33-mode operation. A distributed-parameter electroelastic modeling framework is developed for the elastodynamic scenarios of piezoelectric power generation and dynamic actuation. Mixing rules (i.e. rule of mixtures) formulation is employed to evaluate the equivalent and homogenized properties of macro-fiber composite structures. The electroelastic and dielectric properties of a representative volume element (piezoelectric fiber and epoxy matrix) between two neighboring interdigitated electrodes are then coupled with the global electro-elastodynamics based on the Euler–Bernoulli kinematics accounting for two-way electromechanical coupling. Various macro-fiber composite bimorph cantilevers with different widths are tested for resonant dynamic actuation and power generation with resistive shunt damping. Excellent agreement is reported between the measured electroelastic frequency response and predictions of the analytical framework that bridges the continuum electro-elastodynamics and mixing rules formulation.


2016 ◽  
Vol 28 (9) ◽  
pp. 1188-1210 ◽  
Author(s):  
Panduranga Vittal Avvari ◽  
Yaowen Yang ◽  
Chee Kiong Soh

Piezoelectric energy harvesting has attracted extensive research in the advancement of new designs and techniques over the last decade. The cantilever shaped piezoelectric energy harvesting beam is one of the most employed designs, due to its simplicity and flexibility for further performance enhancement. The strain distribution along the cantilever piezoelectric energy harvesting beam is nonuniform, which would induce fatigue damage at the root of the cantilever on the long run. This particular issue has seldom been addressed in the literature. This article presents an experimental investigation on the fatigue behavior of a cantilever piezoelectric energy harvesting beam at different base excitation levels. The experimental study is augmented with analytical formulation to examine the strain levels and with finite element analysis formulation to model the piezoelectric energy harvesting beam with a macro fiber composite piezoelectric transducer. A two-dimensional model is developed based on the three-dimensional model to investigate crack propagation in the piezoelectric energy harvesting beam. Furthermore, the electromechanical impedance technique is employed to monitor the progression of damage in the experimental specimens. The root mean square deviation and relative root mean square deviation of the impedance values and voltage obtained from the macro fiber composite transducer provide a profound introspection into the damage propagation in the piezoelectric energy harvesting beam. This study provides an insight into the behavior of the piezoelectric energy harvesting beam undergoing fatigue loading due to a uniform sinusoidal base excitation by analyzing the output voltage, resonant frequency, tip displacement, tip velocity, and impedance variations. It will pave the way for future studies on the fatigue-based design guides for piezoelectric energy harvesting beams.


Author(s):  
Wanlu Zhou ◽  
Gopinath Reddy Penamalli ◽  
Lei Zuo

A novel piezoelectric energy harvester with multi-mode dynamic magnifier is proposed and investigated in this paper, which is capable of significantly increasing the bandwidth and the energy harvested from the ambient vibration. The design comprises of an multi-mode intermediate beam with a tip mass, called “dynamic magnifier”, and an “energy harvesting beam with a tip mass. The piezoelectric film is adhered to the harvesting beam to harvest the vibration energy. By properly designing the parameters, such as the length, width and thickness of the two beams and the weight of the two tip masses, we can virtually magnify the motion in all the resonance frequencies of the energy harvesting beam, in a similar way as designing a new beam-type tuned mass damper (TMD) to damp the resonance frequencies of all the modes of the primary beam. Theoretical analysis, finite element simulation, and the experiment study are carried out. The results show that voltage produced by the harvesting beam is amplified for efficient energy harvesting over a broader frequency range, while the peaks of the first three modes of the primary beam can be effectively mitigated simultaneously. The experiment demonstrates 25.5 times more energy harvesting capacity than the conventional cantilever type harvester in broadband frequency 3–300Hz, and over 1000 times more energy close to the first three resonances of harvesting beam.


2010 ◽  
Vol 133 (1) ◽  
Author(s):  
P. Bonello ◽  
S. Rafique

The modeling and analysis of base-excited piezoelectric energy harvesting beams have attracted many researchers with the aim of predicting the electrical output for a given base motion input. Despite this, it is only recently that an accurate model based on the analytical modal analysis method (AMAM) has been developed. Moreover, single-degree-of-freedom models are still being used despite the proven potential for significant error. One major disadvantage of the AMAM is that it is restricted to simple cantilevered uniform-section beams. This paper presents two alternative modeling techniques for energy harvesting beams and uses these techniques in a theoretical study of a bimorph. One of the methods is a novel application of the dynamic stiffness method (DSM) to the modeling of energy harvesting beams. This method is based on the exact solution of the wave equation and so obviates the need for modal transformation. The dynamic stiffness matrix of a uniform-section beam could be used in the modeling of beams with arbitrary boundary conditions or assemblies of beams of different cross sections. The other method is a much-needed reformulation of the AMAM that condenses the analysis to encompass all previously analyzed systems. The Euler–Bernoulli model with piezoelectric coupling is used and the external electrical load is represented by generic linear impedance. Simulations verify that, with a sufficient number of modes included, the AMAM result converges to the DSM result. A theoretical study of a bimorph investigates the effect of the impedance and quantifies the tuning range of the resonance frequencies under variable impedance. The neutralizing effect of a tuned harvester on the vibration at its base is investigated using the DSM. The findings suggest the potential of the novel concept of a variable capacitance adaptive vibration neutralizer that doubles as an adaptive energy harvester. The application of the DSM to more complex systems is illustrated. For the case studied, a significant increase in the power generated was achieved for a given working frequency through the application of a tip rotational restraint, the use of segmented electrodes, and a resized tip mass.


Author(s):  
David Tan ◽  
Paul Yavarow ◽  
Alper Erturk

We explore the modeling and analysis of nonlinear non-conservative dynamics of macro-fiber composite (MFC) piezo-electric structures, guided by rigorous experiments, for resonant vibration-based energy harvesting, as well as other applications leveraging the direct piezoelectric effect, such as resonant sensing. The MFCs employ piezoelectric fibers of rectangular cross section embedded in kapton with interdigitated electrodes to exploit the 33-mode of piezoelectricity. Existing frameworks for resonant nonlinearities have so far considered conventional piezoceramics that use the 31-mode of piezoelectricity. In the present work, we develop a framework to represent and predict nonlinear electroelastic dynamics of MFC bimorph cantilevers under resonant base excitation. The interdigitated electrodes are shunted to a set of resistive electrical loads to quantify the electrical power output. Experiments are conducted on a set of MFC bimorphs over a broad range of mechanical excitation levels to identify the types of nonlinearities present and to compare the model predictions and experiments. The experimentally observed interaction of material softening and geometric hardening effects, as well as dissipative effects, is captured and demonstrated by the model.


Author(s):  
Hyun Jeong Song ◽  
Young-Tai Choi ◽  
Norman M. Wereley ◽  
Ashish S. Purekar

This paper addresses modeling, design, theoretical and experimental characteristics of an energy harvesting device utilizing macro-fiber composite (MFC) materials. The energy harvesting device is composed of a cantilever beam with MFC materials, a tip mass, a rectifier, and an electrical resistance. An theoretical model of the energy harvesting device is established for estimation of generated power, voltage, and current under sinusoidal base excitation at its first natural frequency. Parametric studies are achieved to maximize generated power and current with variation of beam thickness, natural frequency, type of MFC and electrical resistance. Also, performance characteristics of the energy harvesting device with two MFC patches are theoretically and experimentally evaluated under different acceleration levels.


Sign in / Sign up

Export Citation Format

Share Document