Adaptive funnel fast nonsingular terminal sliding mode control for robotic manipulators with dynamic uncertainties

Author(s):  
Huaizhen Wang ◽  
Lijin Fang ◽  
Menghui Hu ◽  
Tangzhong Song ◽  
Jiqian Xu

In this paper, a novel adaptive funnel fast nonsingular terminal sliding mode control for robotic manipulators with dynamic uncertainties is proposed. A modified funnel variable is utilized to transform the tracking error fall within funnel boundary, which improves the transient and steady-state tracking performance of robotic manipulators. Based on the transformed error, a novel funnel fast nonsingular terminal sliding mode surface is developed and a sliding mode control law is designed to stabilize the closed-loop system and achieve high tracking precision. An adaptive update law combined with the sliding mode surface is designed to deal with uncertainties and external disturbances where their upper bounds are unknown in practical cases. The stability and finite time convergence of the closed-loop system are proved by Lyapunov stability theorem. Simulation results and discussions are presented to demonstrate the effectiveness and high-precision tracking control for robotic manipulators.

Author(s):  
Huaizhen Wang ◽  
Lijin Fang ◽  
Junyi Wang ◽  
Tangzhong Song ◽  
Hesong Shen

Robust and precise control of robot systems are still challenging problems due to the existence of uncertainties and backlash hysteresis. To deal with the problems, an adaptive neural sliding mode control with prescribed performance is proposed for robotic manipulators. A finite-time nonsingular terminal sliding mode control combined with a new prescribed performance function (PPF) is developed to guarantee the transient and steady-state performance of the closed-loop system. Based on the sliding mode variable, an adaptive law is presented to effectively estimate the bound of system uncertainties where the prior knowledge of uncertainties is not needed. To approximate nonlinear function and unknown dynamics, the Gaussian radial basis function neural networks(RBFNNs) is introduced to compensate the lumped nonlinearities. All signals of the closed-loop system are proven to be uniformly ultimately bounded (UUB) by Lyapunov analysis. Finally, comparative simulations are conducted to illustrate superiority and reliability of the proposed control strategy.


2016 ◽  
Vol 39 (8) ◽  
pp. 1195-1204 ◽  
Author(s):  
Huiming Wang ◽  
Shihua Li ◽  
Qixun Lan ◽  
Zhenhua Zhao ◽  
Xingpeng Zhou

In this paper, we discuss the speed regulation problem of permanent magnet synchronous motor (PMSM) servo systems. Firstly, a continuous terminal sliding mode control (CTSMC) method is introduced for speed loops to eliminate the chattering phenomenon while still ensuring a strong disturbance rejection ability for the closed-loop system. However, in the presence of strong disturbances, the CTSMC law still needs to select high gain which may result in large steady-state speed fluctuations for the PMSM control system. To this end, an extended state observer (ESO)-based continuous terminal sliding mode control method is proposed. The ESO is employed to estimate system disturbances and the estimation is employed by the speed controller as a feed-forward compensation for disturbances. Compared to the conventional sliding mode control method, the proposed composite sliding control method obtains a faster convergence and better tracking performance. Also, by feed-forward compensating system disturbances and tuning down the gain of the CTSMC law, the fluctuation of steady-state speed of the closed-loop system is reduced while the disturbance rejection capability of the PMSM system is still maintained. Simulation and experimental results are provided to demonstrate the superior properties of the proposed control method.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Wei Gao ◽  
Xiuping Chen ◽  
Haibo Du ◽  
Song Bai

For the position tracking control problem of permanent magnet linear motor, an improved fast continuous-time nonsingular terminal sliding mode control algorithm based on terminal sliding mode control method is proposed. Specifically, first, for the second-order model of position error dynamic system, a new continuous-time fast terminal sliding surface is introduced and an improved continuous-time fast terminal sliding mode control law is proposed. Then rigorous theoretical analysis is provided to demonstrate the finite-time stability of the closed-loop system by using the Lyapunov function. Finally, numerical simulations are given to verify the effectiveness and advantages of the proposed fast nonsingular terminal sliding mode control method.


2021 ◽  
Author(s):  
Normaisharah Mamat ◽  
Mohd Fauzi Othman ◽  
Mohd Fitri Mohd Yakub

Abstract Building structures are prone to damage due to natural disasters, and this challenges structural engineers to design safer and more robust building structures. This study is conducted to prevent these consequences by implementing a control strategy that can enhance a building's stability and reduce the risk of damage. Therefore, to realize the structural integrity of a building, a hybrid control device is equipped with control strategies to enhance robustness. The control strategy proposed in this study is adaptive nonsingular terminal sliding mode control (ANTSMC). ANTSMC is an integrated controller of radial basis function neural network (RBFNN) and nonsingular terminal sliding mode control (NTSMC), which has a fast dynamic response, finite-time convergence, and the ability to enhance the control performance against a considerable uncertainty. The proposed controller is designed based on the sliding surface and the control law. The building with a two-degree-of-freedom (DOF) system is designed in Matlab/Simulink and validated with the experimental work connected to the LMSTest.Lab software. The performance of this controller is compared with those of the terminal sliding mode control (TSMC) and NTSMC in terms of the displacement response, sliding surface, and the probability of damage. The result showed that the proposed controller, ANTSMC can suppress vibrations up to 46%, and its percentage probability of complete damage is 15% from the uncontrolled structure. Thus, these findings are imperative towards increasing the safety level in building structures and occupants, and reducing damage costs in the event of a disaster.


Sign in / Sign up

Export Citation Format

Share Document