Exact dynamic stiffness method for planar natural frequencies of curved Timoshenko beams

Author(s):  
W P Howson ◽  
A K Jemah

An exact dynamic stiffness matrix, which defines the planar motion of a circularly curved Timoshenko beam member, is developed from the closed-form solution to the governing differential equations. This matrix and a variation of the Wittrick-Williams algorithm are combined in a stiffness formulation in such a way that the required natural frequencies, which correspond to the solutions of a transcendental eigenvalue problem, are converged upon unambiguously, to any desired accuracy, for any plane structure composed of such members. The effects of rotary inertia and shear deflection, uniquely described by the parameters r and s respectively, can be accounted for in any combination. Any particular effect can be neglected by setting the relevant parameter to zero. An example is included that highlights the effects of every possible combination of rotary inertia and shear deflection on the natural frequencies of a simple two-span arch structure, and comparisons are made with published work to confirm the accuracy of the method.

2010 ◽  
Vol 54 (01) ◽  
pp. 15-33
Author(s):  
Jong-Shyong Wu ◽  
Chin-Tzu Chen

Under the specified assumptions for the equation of motion, the closed-form solution for the natural frequencies and associated mode shapes of an immersed "Euler-Bernoulli" beam carrying an eccentric tip mass possessing rotary inertia has been reported in the existing literature. However, this is not true for the immersed "Timoshenko" beam, particularly for the case with effect of axial load considered. Furthermore, the information concerning the forced vibration analysis of the foregoing Timoshenko beam caused by wave excitations is also rare. Therefore, the first purpose of this paper is to present a technique to obtain the closed-form solution for the natural frequencies and associated mode shapes of an axial-loaded immersed "Timoshenko" beam carrying eccentric tip mass with rotary inertia by using the continuous-mass model. The second purpose is to determine the forced vibration responses of the latter resulting from excitations of regular waves by using the mode superposition method incorporated with the last closed-form solution for the natural frequencies and associated mode shapes of the beam. Because the determination of normal mode shapes of the axial-loaded immersed "Timoshenko" beam is one of the main tasks for achieving the second purpose and the existing literature concerned is scarce, the details about the derivation of orthogonality conditions are also presented. Good agreements between the results obtained from the presented technique and those obtained from the existing literature or conventional finite element method (FEM) confirm the reliability of the presented theories and the developed computer programs for this paper.


2021 ◽  
Author(s):  
Nicholas H. Erdelyi ◽  
Seyed M. Hashemi

A dynamic stiffness element for flexural vibration analysis of delaminated multilayer beams is developed and subsequently used to investigate the natural frequencies and modes of two-layer beam configurations. Using the Euler-Bernoulli bending beam theory, the governing differential equations are exploited and representative, frequency-dependent, field variables are chosen based on the closed form solution to these equations. The boundary conditions are then imposed to formulate the dynamic stiffness matrix (DSM), which relates harmonically varying loads to harmonically varying displacements at the beam ends. The bending vibration of an illustrative example problem, characterized by delamination zone of variable length, is investigated. Two computer codes, based on the conventional Finite Element Method (FEM) and the analytical solutions reported in the literature, are also developed and used for comparison. The intact and defective beam natural frequencies and modes obtained from the proposed DSM method are presented along with the FEM and analytical results and those available in the literature.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Nicholas H. Erdelyi ◽  
Seyed M. Hashemi

A dynamic stiffness element for flexural vibration analysis of delaminated multilayer beams is developed and subsequently used to investigate the natural frequencies and modes of two-layer beam configurations. Using the Euler-Bernoulli bending beam theory, the governing differential equations are exploited and representative, frequency-dependent, field variables are chosen based on the closed form solution to these equations. The boundary conditions are then imposed to formulate the dynamic stiffness matrix (DSM), which relates harmonically varying loads to harmonically varying displacements at the beam ends. The bending vibration of an illustrative example problem, characterized by delamination zone of variable length, is investigated. Two computer codes, based on the conventional Finite Element Method (FEM) and the analytical solutions reported in the literature, are also developed and used for comparison. The intact and defective beam natural frequencies and modes obtained from the proposed DSM method are presented along with the FEM and analytical results and those available in the literature.


2021 ◽  
Author(s):  
Nicholas H. Erdelyi ◽  
Seyed M. Hashemi

A dynamic stiffness element for flexural vibration analysis of delaminated multilayer beams is developed and subsequently used to investigate the natural frequencies and modes of two-layer beam configurations. Using the Euler-Bernoulli bending beam theory, the governing differential equations are exploited and representative, frequency-dependent, field variables are chosen based on the closed form solution to these equations. The boundary conditions are then imposed to formulate the dynamic stiffness matrix (DSM), which relates harmonically varying loads to harmonically varying displacements at the beam ends. The bending vibration of an illustrative example problem, characterized by delamination zone of variable length, is investigated. Two computer codes, based on the conventional Finite Element Method (FEM) and the analytical solutions reported in the literature, are also developed and used for comparison. The intact and defective beam natural frequencies and modes obtained from the proposed DSM method are presented along with the FEM and analytical results and those available in the literature.


2000 ◽  
Author(s):  
Arnoldo Garcia ◽  
Arnold Lumsdaine ◽  
Ying X. Yao

Abstract Many studies have been performed to analyze the natural frequency of beams undergoing both flexural and torsional loading. For example, Adam (1999) analyzed a beam with open cross-sections under forced vibration. Although the exact natural frequency equation is available in literature (Lumsdaine et al), to the authors’ knowledge, a beam with an intermediate mass and support has not been considered. The models are then compared with an approximate closed form solution for the natural frequency. The closed form equation is developed using energy methods. Results show that the closed form equation is within 2% percent when compared to the transcendental natural frequency equation.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Natalie Waksmanski ◽  
Ernian Pan ◽  
Lian-Zhi Yang ◽  
Yang Gao

An exact closed-form solution of free vibration of a simply supported and multilayered one-dimensional (1D) quasi-crystal (QC) plate is derived using the pseudo-Stroh formulation and propagator matrix method. Natural frequencies and mode shapes are presented for a homogenous QC plate, a homogenous crystal plate, and two sandwich plates made of crystals and QCs. The natural frequencies and the corresponding mode shapes of the plates show the influence of stacking sequence on multilayered plates and the different roles phonon and phason modes play in dynamic analysis of QCs. This work could be employed to further expand the applications of QCs especially if used as composite materials.


Author(s):  
N. B. Naduvinamani ◽  
G. B. Marali

The general dynamic Reynolds equation of sliding-squeezing surfaces with micro-polar fluids is derived for the assessment of dynamic characteristics of bearings with general film thickness. The detailed analysis is presented for the plane inclined slider bearings by using perturbation method. Two Reynolds-type equations corresponding to steady performance and perturbed characteristics are obtained. The closed form solution of these equations is obtained. The numerical computations of the results show that, the micropolar fluids provide an improved characteristics for both steady-state and the dynamic stiffness and damping characteristics. It is found that the maximum steady-load-carrying capacity is function of coupling parameter and is achieved at smaller values of profile parameter for larger values of the coupling parameter.


2017 ◽  
Vol 2017 ◽  
pp. 1-20 ◽  
Author(s):  
Shi-Chao Yi ◽  
Lin-Quan Yao ◽  
Bai-Jian Tang

Closed-form solution of a special higher-order shear and normal deformable plate theory is presented for the static situations, natural frequencies, and buckling responses of simple supported functionally graded materials plates (FGMs). Distinguished from the usual theories, the uniqueness is the differentia of the new plate theory. Each individual FGM plate has special characteristics, such as material properties and length-thickness ratio. These distinctive attributes determine a set of orthogonal polynomials, and then the polynomials can form an exclusive plate theory. Thus, the novel plate theory has two merits: one is the orthogonality, where the majority of the coefficients of the equations derived from Hamilton’s principle are zero; the other is the flexibility, where the order of the plate theory can be arbitrarily set. Numerical examples with different shapes of plates are presented and the achieved results are compared with the reference solutions available in the literature. Several aspects of the model involving relevant parameters, length-to-thickness, stiffness ratios, and so forth affected by static and dynamic situations are elaborate analyzed in detail. As a consequence, the applicability and the effectiveness of the present method for accurately computing deflection, stresses, natural frequencies, and buckling response of various FGM plates are demonstrated.


Sign in / Sign up

Export Citation Format

Share Document