Regenerative braking algorithm for the electric vehicle with a seamless two-speed transmission

Author(s):  
Zhou Zhou ◽  
Miaohua Huang

Better energy efficiency can be acquired by an appropriate shift operation during the regenerative braking process. In this work, an electric vehicle equipped with a two-speed automated transmission was used as the target vehicle. The transmission consists of two-stage planetary gear sets, a helical gear set, and two brakes. A hierarchical algorithm is presented for the electric vehicle. The upper-level algorithm was synthesized to assign braking force among regenerative braking, friction braking, front axle braking, and rear axle braking. Based on the motor external characteristic and ECE-R13 regulations, the work designed the dynamic distribution strategy for maximum use of regenerative braking. In the medium-level algorithm, the motor speed, efficiency characteristics, and assigned regenerative braking torque from upper-level algorithm were used to analyze the optimal shift points for improving regenerative efficiency. Then, a shift points table was drawn. In the lower-level algorithm, the linear control for the transmission was given to ensure seamless and smooth shifting. Finally, hardware-in-loop simulations were carried out. The results show that the proposed algorithm can improve performance in energy efficiency in the experimental braking events.

Author(s):  
M. Kavitha ◽  
V. Elanangai ◽  
S. Jayaprakash ◽  
V. Balasubramanian

Due to the increasing concern for environment protection and the uncertainty about oil reserves, nowadays electricity is playing a key role as an alternative energy source in the automotive sector. In this paper, non isolated bidirectional converter is used for electric vehicle application during regenerative braking process. During motoring operation, the converter supplies energy to motor through battery. In regenerative braking action, the converter supplies the available back emf to charge the battery. The recycled energy is effectively stored in the battery. The simulation is carried out in MATLAB/Simulink. The worthiness of simulation is illustrated experimentally by developing a prototype. The simulation and experimental results are presented in this paper<strong>.</strong>


2017 ◽  
Vol 872 ◽  
pp. 331-336 ◽  
Author(s):  
Zhi Jun Guo ◽  
Dong Dong Yue ◽  
Jing Bo Wu

The regenerative braking strategy for precursor pure electric vehicle was studied in this paper. Firstly, a constraint optimization model was established for the braking force distribution, in which both braking stability and recovery efficiency of braking energy were taken into account. Secondly, Particle Swarm Optimization (PSO) algorithm was applied to optimize the multi key parameters in the model. Finally, the optimized braking torque of the motor was obtained at different speed, different braking strength and different battery charge state. A vehicle model was built to validate the optimized results through simulation. The results showed that, compared with the original control strategy, the optimized control strategy not only could increase the braking stability effectively, but also improve the energy recovery efficiency in a certain extent.


2014 ◽  
Vol 577 ◽  
pp. 408-411
Author(s):  
Ren Guang Wang ◽  
Ming Jun Zhang ◽  
Chuan Long Shi

A new powertrain system was developed for electric vehicle driving application with adoption of one electric motor and one set of planetary gear set. With the control of fork, the sleeve of synchronizer can mesh two different parts on the left and right side; the system can provide pure electric driving, hybrid driving and regenerative braking operation modes to meet vehicle practical conditions. It can reduce both power train structure size and cost with fewer parts.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Guodong Yin ◽  
XianJian Jin

A new cooperative braking control strategy (CBCS) is proposed for a parallel hybrid electric vehicle (HEV) with both a regenerative braking system and an antilock braking system (ABS) to achieve improved braking performance and energy regeneration. The braking system of the vehicle is based on a new method of HEV braking torque distribution that makes the antilock braking system work together with the regenerative braking system harmoniously. In the cooperative braking control strategy, a sliding mode controller (SMC) for ABS is designed to maintain the wheel slip within an optimal range by adjusting the hydraulic braking torque continuously; to reduce the chattering in SMC, a boundary-layer method with moderate tuning of a saturation function is also investigated; based on the wheel slip ratio, battery state of charge (SOC), and the motor speed, a fuzzy logic control strategy (FLC) is applied to adjust the regenerative braking torque dynamically. In order to evaluate the performance of the cooperative braking control strategy, the braking system model of a hybrid electric vehicle is built in MATLAB/SIMULINK. It is found from the simulation that the cooperative braking control strategy suggested in this paper provides satisfactory braking performance, passenger comfort, and high regenerative efficiency.


2016 ◽  
Vol 176 ◽  
pp. 125-137 ◽  
Author(s):  
Liang Li ◽  
Xujian Li ◽  
Xiangyu Wang ◽  
Jian Song ◽  
Kai He ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Jiankun Peng ◽  
Hongwen He ◽  
Wei Liu ◽  
Hongqiang Guo

This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking safety in emergency braking condition; the bottom layer is used to maximize the regenerative braking energy recovery efficiency with a reallocated braking torque strategy; the reallocated braking torque strategy can recovery braking energy as much as possible in the premise of meeting battery charging power. The simulation results show that the proposed hierarchical control strategy is reasonable and can adapt to different typical road surfaces and load cases; the vehicle braking stability and safety can be guaranteed; furthermore, the regenerative braking energy recovery efficiency can be improved.


2021 ◽  
Vol 75 (4) ◽  
pp. 13-19
Author(s):  
Umnitsyn Artem Alexeyevich ◽  
◽  
Bakhmutov Sergey Vasilyevich ◽  
Yakimovich Boris Anatolyevich ◽  
Kakushina Elena Gennadievna ◽  
...  

The article discusses the process of braking an all-wheel drive electric vehicle with an indi-vidual drive of the driving wheels with a different coefficient of adhesion of tires to the road along the sides of the electric vehicle. A feature of this work is the use of fuzzy logic in the braking torque control system by the actuators of the front axle of the vehicle. Based on the results of the study, it was concluded that the proposed type of control is preferable in comparison with the control of only one actuator - the brake mechanism.


Sign in / Sign up

Export Citation Format

Share Document