scholarly journals Numerical continuation applied to internal combustion engine models

Author(s):  
Shaun Smith ◽  
James Knowles ◽  
Byron Mason

This paper proposes tools from bifurcation theory, specifically numerical continuation, as a complementary method for efficiently mapping the state-parameter space of an internal combustion engine model. Numerical continuation allows a steady-state engine response to be traced directly through the state-parameter space, under the simultaneous variation of one or more model parameters. By applying this approach to two nonlinear engine models (a physics-based model and a data-driven model), this work determines how input parameters ‘throttle position’ and ‘desired load torque’ affect the engine’s dynamics. Performing a bifurcation analysis allows the model’s parameter space to be divided into regions of different qualitative types of the dynamic behaviour, with the identified bifurcations shown to correspond to key physical properties of the system in the physics-based model: minimum throttle angles required for steady-state operation of the engine are indicated by fold bifurcations; regions containing self-sustaining oscillations are bounded by supercritical Hopf bifurcations. The bifurcation analysis of a data-driven engine model shows how numerical continuation could be used to evaluate the efficacy of data-driven models.

2021 ◽  
Author(s):  
Scott A Warwick

Dynamical behaviors of a system consisting of a Saito-450 3-cylinder, 4-stroke engine and a variable pitch propeller are studied. The kinemtical equations for the planar 8-bar internal combustion engine are established using a complex number method. The nonlinear dynamical equation for the engine-propeller system is obtained using the Lagrange equation and solved numerically using a computer code written in the Matlab language. Various simulations were performed to study the transient and steady state dynamical behaviors of the sophisticated multiple rigid body system while taking into account the engine pressure pulsations and aerodynamic load. The steady-state motions of the propeller shaft for different engine powers and speeds were obtained and decomposed using the Fast Fourier Technique (FFT). Results presented in this thesis provide necessary input for studies of flexible body dynamics where the torsional vibration of the propeller shaft is of practical interest to design engineers in the aerospace industry.


2019 ◽  
Vol 11 (11) ◽  
pp. 168781401988625 ◽  
Author(s):  
Lijun Hao ◽  
Chunjie Wang ◽  
Hang Yin ◽  
Chunxiao Hao ◽  
Haohao Wang ◽  
...  

In order to estimate the light-duty vehicle fuel economy at high-altitude areas, the coast-down tests of a passenger car on level road were conducted at different elevations, and the coast-down resistance coefficients were calculated. Furthermore, a fuel economy model for a light-duty vehicle adopting backward simulation method was developed, and it mainly consists of vehicle dynamic model, internal combustion engine model, transmission model, and differential model. The internal combustion engine model consists of the brake-specific fuel consumption maps as functions of engine torque and engine speed, and the brake-specific fuel consumption map near sea level was constructed based on engine experimental data, and the brake-specific fuel consumption maps at high altitudes were calculated by GT-Power Modeling of the internal combustion engine. The fuel consumption rate was calculated from the brake-specific fuel consumption maps and brake power and used to calculate the fuel economy of the light-duty vehicle. The model predicted fuel consumption data met well with the test results, and the model prediction errors are within 5%.


Lubricants ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 62
Author(s):  
Bachir Bouchehit ◽  
Benyebka Bou-Saïd ◽  
John Tichy

Hydrogen is the cleanest fuel available because its combustion product is water. The internal combustion engine can, in principle and without significant modifications, run on hydrogen to produce mechanical energy. Regarding the technological solution leading to compact engines, a question to ask is the following: Can combustion engine systems be lubricated with hydrogen? In general, since many applications such as in turbomachines, is it possible to use the surrounding gas as a lubricant? In this paper, journal bearings global parameters are calculated and compared for steady state and dynamic conditions for different gas constituents such as air, pentafluoropropane, helium and hydrogen. Such a bearing may be promising as an ecological alternative to liquid lubrication.


1983 ◽  
Author(s):  
Tsuneyoshi Uyemura ◽  
Icho Fu ◽  
Yoshitaka Yamamoto ◽  
Naoki Yokoyama ◽  
Motoyoshi Hisaoka

Sign in / Sign up

Export Citation Format

Share Document