Multi-layer controller with state-constraint: Vehicle lateral stability control based on fuzzy logic

Author(s):  
Neng Wan ◽  
Guangping Zeng ◽  
Chunguang Zhang ◽  
Dingqi Pan ◽  
Songtao Cai

This paper deals with a new state-constrained control (SCC) system of vehicle, which includes a multi-layer controller, in order to ensure the vehicle’s lateral stability and steering performance under complex environment. In this system, a new constraint control strategy with input and state constraints is applied to calculate the steady-state yaw moment. It ensures the vehicle lateral stability by tracking the desired yaw rate value and limiting the allowable range of the side slip. Through the linkage of the three-layer controller, the tire load is optimized and achieve minimal vehicle velocity reduction. The seven-degree-of-freedom (7-DOF) simulation model was established and simulated in MATLAB to evaluate the effect of the proposed controller. Through the analysis of the simulation results, compared with the traditional ESC and integrated control, it not only solves the problem of obvious velocity reduction, but also solves the problem of high cost and high hardware requirements in integrated control. The simulation results show that designed control system has better performance of path tracking and driving state, which is closer to the desired value. Through hardware-in-the-loop (HIL) practical experiments in two typical driving conditions, the effectiveness of the above proposed control system is further verified, which can improve the lateral stability and maneuverability of the vehicle.

2011 ◽  
Vol 279 ◽  
pp. 423-428 ◽  
Author(s):  
Jie Tian ◽  
Jin Wu ◽  
Ning Chen

According to the design demands of the steer-by-wire system, a PIlDm controller based on fractional calculus was proposed. Aligning controller and steering controller were respectively designed to achieve the aligning and steering function of the front wheel steering module, which can ensure the robust of the steer-by-wire system during the special ranges of frequency. The five design parameters of fractional PIlDm controller were achieved by optimization method. Oustaloup method was used to approximate the fractional PIlDm controller and simulation model was achieved, which can be used in Matlab/Simulink. Computational simulations of the control system were carried out and simulation results showed the effectiveness of the control method to improve the robust of the steering-by-wire system.


2011 ◽  
Vol 268-270 ◽  
pp. 1411-1414
Author(s):  
Hai Wen Du ◽  
Xing Wei Weng ◽  
Yu Song Fu ◽  
Chuan Lin Tang ◽  
Li Xin Zhang

In order to study the uncertain nonlinear jamming problem in UCAV’s flight control system, a method using jamming observer to check the system’s jamming was designed. Based on jamming observer, a flight control law was constructed, which reduced the restrictive condition for the jamming. The simulation results show that the adaptive flight control law based on jamming observer, make UCAV’s flight control system have good stability and robustness, it’s a great convenience analyzing the system stability.


2011 ◽  
Vol 66-68 ◽  
pp. 27-30
Author(s):  
Hai Wen Du ◽  
Xing Wei Weng ◽  
Yu Song Fu ◽  
Chuan Lin Tang

In order to study the nonlinear jamming problem in UCAV’s flight control system, a method of using observer to check the system’s jamming was designed, constructed robust dynamic inversion control law based on jamming observer. The simulation results show that the robust dynamic inversion control law based on jamming observer, make UCAV’s flight control system have good stability and robustness, it’s a great convenience analyzing the system stability.


2011 ◽  
Vol 299-300 ◽  
pp. 1303-1306 ◽  
Author(s):  
Shu Wen Zhou ◽  
Si Qi Zhang ◽  
Guang Yao Zhao

Emergency braking on a low coefficient of friction or split-mu road surface, the semi-trailer may push the tractor from behind until it spins round and faces backwards, and a jackknife accident occurs. In this paper, the tractor semi-trailer kinematics was analyzed and a 3-dof of tractor semi-trailer model was used to design a state observer to estimate the articulation angle. To avoid a jackknife, the four-channel ABS which can produce maximum braking force will be switch to three-channel ABS according the estimated articulation angle. The virtual prototyping simulation results show that the jackknife control system can improve the tractor semi-trailer lateral stability under emergency braking and shorten the stop distance dramatically on split-mu road surface at high speed.


2013 ◽  
Vol 313-314 ◽  
pp. 1125-1129
Author(s):  
Fu Guang Yang ◽  
Jiu Hong Ruan ◽  
Yi Bin Li

Study the lateral stability control method with regenerative braking for 4WID electrical vehicle whiling braking, an integrated control strategy with primary objective to enhance vehicle lateral stability was proposed, by which the regenerative braking, hydraulic braking, ABS and direct yaw moment control system were coordinated effectively. Simulation results on split-μ road indicated that compared with traditional ABS, the integrated control method can improve the lateral stability of vehicle at urgent braking condition, and increase the mileage of electric vehicles.


2017 ◽  
Vol 31 (19-21) ◽  
pp. 1740090 ◽  
Author(s):  
Huan Shen ◽  
Yun-Sheng Tan

This paper proposes an integrated control system that cooperates with the four-wheel steering (4WS) and direct yaw moment control (DYC) to improve the vehicle handling and stability. The design works of the four-wheel steering and DYC control are based on sliding mode control. The integration control system produces the suitable 4WS angle and corrective yaw moment so that the vehicle tracks the desired yaw rate and sideslip angle. Considering the change of the vehicle longitudinal velocity that means the comfort of driving conditions, both the driving torque and braking torque are used to generate the corrective yaw moment. Simulation results show the effectiveness of the proposed control algorithm.


2012 ◽  
Vol 591-593 ◽  
pp. 1902-1906
Author(s):  
Tong Han ◽  
Shang Qin Tang ◽  
Chang Qiang Huang ◽  
Kang Sheng Dong

In order to solve the dynamics and kinematics highly coupled problem which exists in missile separating from cavity and in order to acquire accurate trajectory parameters and import control system, a parallel collaborative simulation platform was established. The data interface between FLUENT and SIMULINK was developed by the way of share data file, which use the Journal file of FLUENT and S-function of SIMULINK. The missile’s rudder control model was established. The aerodynamics characters and trajectory characters during missile separating from cavity were simulated under uncontrolled and closed-loop controlled conditions. The simulation results verify the feasibility of parallel collaborative simulation and show that rudder control method can effectively improve the characteristics of missile separating from cavity.


Sign in / Sign up

Export Citation Format

Share Document