Geometry optimization of a planar double wishbone suspension based on whole-range nonlinear dynamic model

Author(s):  
Zhihua Niu ◽  
Sun Jin ◽  
Rongrong Wang ◽  
Yansong Zhang

Dynamic analysis is an essential task in the geometry design of suspension systems. Whereas the dynamic simulation based on numerical software like Adams is quite slowly and the existing analytical models of the nonlinear suspension geometry are mostly based on small displacement hypothesis, this paper aims to propose a whole-range dynamic model with high computational efficiency for planar double wishbone suspensions and further achieve the fast optimal design of suspension geometry. Selection of the new generalized coordinate and explicit solutions of the basic four-bar mechanism dramatically reduce the complexity of suspension geometry representation and provide analytical solutions for all of the time varying dimensions. By this means, the running speed and computational accuracy of the new model are guaranteed simultaneously. Furthermore, an original Matlab/Simulink implementation is given to maintain the geometric nonlinearity in the solving process of dynamic differential equations. After verifying its accuracy with an ADAMS prototype, the presented whole-range model is used in the vast-parameter optimization of suspension geometry. Since both kinematic and dynamic performances are evaluated in the objective function, the optimization is qualified to give a comprehensive suggestion to the design of suspension geometry.

2009 ◽  
Vol 11 (2) ◽  
pp. 163-168
Author(s):  
Long LV ◽  
Zhenfang HUANG ◽  
Jiang WU

Drones ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 71
Author(s):  
Luz M. Sanchez-Rivera ◽  
Rogelio Lozano ◽  
Alfredo Arias-Montano

Hybrid Unmanned Aerial Vehicles (H-UAVs) are currently a very interesting field of research in the modern scientific community due to their ability to perform Vertical Take-Off and Landing (VTOL) and Conventional Take-Off and Landing (CTOL). This paper focuses on the Dual Tilt-wing UAV, a vehicle capable of performing both flight modes (VTOL and CTOL). The UAV complete dynamic model is obtained using the Newton–Euler formulation, which includes aerodynamic effects, as the drag and lift forces of the wings, which are a function of airstream generated by the rotors, the cruise speed, tilt-wing angle and angle of attack. The airstream velocity generated by the rotors is studied in a test bench. The projected area on the UAV wing that is affected by the airstream generated by the rotors is specified and 3D aerodynamic analysis is performed for this region. In addition, aerodynamic coefficients of the UAV in VTOL mode are calculated by using Computational Fluid Dynamics method (CFD) and are embedded into the nonlinear dynamic model. To validate the complete dynamic model, PD controllers are adopted for altitude and attitude control of the vehicle in VTOL mode, the controllers are simulated and implemented in the vehicle for indoor and outdoor flight experiments.


Author(s):  
Alireza Nemati ◽  
Manish Kumar

In this paper, a nonlinear control of a tilting rotor quadcopter is presented. The overall control architecture is divided into two sub-controllers. The first controller is based on the feedback linearization control derived from the dynamic model of the tilting quadcopter. This controls the pitch, roll, and yaw motions required for movement along an arbitrary trajectory in space. The second controller is based on two PD controllers which are used to control the tilting of the quadcopter independently along the pitch and the yaw directions respectively. The overall control enables the quadcopter to combine tilting and movement along a desired trajectory simultaneously. Simulation studies are presented based on the developed nonlinear dynamic model of the tilting rotor quadcopter to demonstrate the validity and effectiveness of the overall control system for an arbitrary trajectory tracking.


2021 ◽  
Vol 12 (1) ◽  
pp. 361-373
Author(s):  
Dawei Liu ◽  
Zhenzhen Lv ◽  
Guohao Zhao

Abstract. A noncircular face gear (NFG) conjugated with a pinion is a new type of face gear which can transmit variable velocity ratio and in which two time-varying excitations exist, namely the meshing stiffness excitation and instantaneous center excitation. Considering the tooth backlash, static transmission error and multifrequency parametric excitation, a nonlinear dynamic model of the NFG pair is presented. Based on the harmonic balance method and discrete Fourier transformation, a semi-analytic approach for the nonlinear dynamic model is given to analyze the dynamic behaviors of the NFG. Results demonstrate that, with increase in the eccentric ratio, input velocity and error amplitude, the NFG will undergo a non-rattle, unilateral rattle and bilateral rattle state in succession, and a jump phenomenon will appear in the dynamic responses when the rattle state of the gears is transformed from unilateral rattle to bilateral rattle.


Sign in / Sign up

Export Citation Format

Share Document